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a b s t r a c t 

Understanding the temporal and spatial roles of nutrient limitation on phytoplankton growth is neces- 

sary for developing successful management strategies. Chesapeake Bay has well-documented seasonal 

and spatial variations in nutrient limitation, but it remains unknown whether these patterns of nutrient 

limitation have changed in response to nutrient management efforts. We analyzed historical data from 

nutrient bioassay experiments (1992–2002) and data from long-term, fixed-site water-quality monitoring 

program (1990–2017) to develop empirical approaches for predicting nutrient limitation in the surface 

waters of the mainstem Bay. Results from classification and regression trees (CART) matched the seasonal 

and spatial patterns of bioassay-based nutrient limitation in the 1992–2002 period much better than two 

simpler, non-statistical approaches. An ensemble approach of three selected CART models satisfactorily 

reproduced the bioassay-based results (classification rate = 99%). This empirical approach can be used 

to characterize nutrient limitation from long-term water-quality monitoring data on much broader geo- 

graphic and temporal scales than would be feasible using bioassays, providing a new tool for informing 

water-quality management. Results from our application of the approach to 21 tidal monitoring stations 

for the period of 2007–2017 showed modest changes in nutrient limitation patterns, with expanded ar- 

eas of nitrogen-limitation and contracted areas of nutrient saturation (i.e., not limited by nitrogen or 

phosphorus). These changes imply that long-term reductions in nitrogen load have led to expanded areas 

with nutrient-limited phytoplankton growth in the Bay, reflecting long-term water-quality improvements 

in the context of nutrient enrichment. However, nutrient limitation patterns remain unchanged in the 

majority of the mainstem, suggesting that nutrient loads should be further reduced to achieve a less 

nutrient-saturated ecosystem. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Nutrient enrichment has become a major issue in many coastal

cosystems around the world ( Boesch et al., 20 01 ; Cloern, 20 01 ;
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emp et al., 2009 ; Boesch, 2019 ; Malone and Newton, 2020 ).

hesapeake Bay, the largest estuary in North America, has a long

istory of cultural eutrophication accompanied by excessive algal

rowth and seasonal hypoxia ( Boesch et al., 2001 ; Hagy et al.,

0 04 ; Kemp et al., 20 05 ). Such symptoms have been attributed

n part to excessive nutrient and sediment loads from the water-

hed ( Ator et al., 2020 ; Hagy et al., 2004 ; Lefcheck et al., 2018 ;

urphy et al., 2011 ; Noe et al., 2020 ; Zhang et al., 2018 ), as seen
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Fig. 1. Maps showing (a) the Chesapeake Bay Program’s long-term tidal water-quality monitoring network and (b) nutrient limitation of phytoplankton growth in the 

mainstem Chesapeake Bay, as based on bioassay data collected between 1992 and 2002 (reproduced from Kemp et al. (2005) with permission). For clarity, only mainstem 

stations are shown in panel (a). Stations analyzed in this work are shown as filled squares and filled circles. 
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in many other coastal systems ( Boesch, 2019 ). Consequently, co-

ordinated management effort s among the Bay state jurisdictions

began in the 1980s to reduce nutrient and sediment loads from

the watershed. Furthermore, the Chesapeake Bay Total Maximum

Daily Load (TMDL) was established in 2010 to enforce load reduc-

tions in order to improve habitat health that can fully support liv-

ing resource survival, growth, and reproduction ( U.S. Environmen-

tal Protection Agency, 2010 ). The TMDL is designed to ensure that

all pollution control measures needed to fully restore the Bay and

its tidal tributaries are in place by 2025. 

To control algal growth in aquatic ecosystems, it is critical

to understand growth limiting factors, which may be nitrogen

(N), phosphorus (P), light (L), silicon (Si), temperature, or others

( Cloern et al., 2014 ; Conley, 1999 ; Elser et al., 2007 ; Hecky and

Kilham, 1988 ). In general, fresh waters are often considered to

be P-limited due to a high N:P ratio in riverine sources (e.g.,

Fennel and Testa, 2019 ) and N fixation ( Hecky and Kilham, 1988 ;

Schindler, 1974 ), whereas marine waters are often considered to be

primarily N-limited due to sediment release of P, slow N fixation,

and high denitrification ( Hecky and Kilham, 1988 ; Paerl, 2018 ). Es-

tuaries are in the transitional zones between freshwater and ma-

rine systems, thereby often exhibiting more complicated patterns

in nutrient limitation ( Cloern et al., 2014 ; Elser et al., 2007 ). For ex-

ample, tidal waters of Chesapeake Bay have shown occurrences of

N-, P-, L -, and Si-limitation that vary in space and time ( Conley and

Malone, 1992 ; Fisher et al., 1999 , 1992 ; Malone et al., 1996 ). 

To understand the seasonal and spatial variations in nutri-

ent limitation in Chesapeake Bay, bioassay experiments were

conducted from a set of locations ( Fig. 1 a) between 1992 and

2002 under controlled, near-surface light conditions ( Fisher and

Gustafson, 20 03 ,20 05; Fisher et al., 1999 ). The results were syn-

thesized in Kemp et al. (2005) to illustrate the seasonal and spa-
ial variations in nutrient limitation in that period ( Fig. 1 b). Such

atterns demonstrate the necessity of a dual nutrient management

trategy ( U.S. Environmental Protection Agency, 2010 ) and have in-

ormed the development of the Chesapeake Bay Estuary Model

 Cerco and Noel, 2017 ). 

In the Chesapeake Bay watershed, large-scale dual nutrient re-

uction goals have been in place for decades, leading to an overall

ong-term reduction in total N (TN) load to the Bay ( Ator et al.,

019 ; Chanat et al., 2016 ; Chanat and Yang, 2018 ; Hirsch et al.,

010 ; Zhang et al., 2016a , 2015 ). Total P (TP) load to the Bay de-

lined in the 1980s to early 1990s, due to improved wastewa-

er treatment and phosphate-detergent bans. However, TP load in-

reased dramatically since the mid-1990s, largely due to reduced

ediment trapping as sediment storage has neared full capacity in

onowingo Reservoir on the Susquehanna River, the largest tribu-

ary to the Bay ( Hirsch, 2012 ; Langland, 2015 ; Zhang et al., 2013 ,

016b ). While the N load reduction is primarily associated with

itrate, the P load increase from the Susquehanna River is pri-

arily associated with particulate P, although dissolved orthophos-

hate load from the Susquehanna has also increased substantially

n recent years ( Fanelli et al., 2019 ). This contrast in the direc-

ion of N and P trends and the form-specific differences suggests

hat there have been changes in the ratios of nutrients for phy-

oplankton growth and thus changes in nutrient limitation on a

ay-wide scale. Unfortunately, bioassay experiments have not been

onducted since 2005 to characterize recent conditions of nutrient

imitation. 

Our main objective was to test the above hypothesis through

n analysis of historical data from nutrient bioassay experiments

1992–2002) and surface-collected data from the Chesapeake Bay

rogram (CBP) long-term, fixed-site water-quality monitoring net-

ork (1990–2017). The specific goals are as follows: 
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1) To develop empirical approaches to predict bioassay-based

measures of nutrient limitation (“response variable”) using

tidal water-quality monitoring data in the concurrent period of

1992–2002 (“Goal 1”), and 

2) To apply the selected approach to tidal water-quality monitor-

ing data in more recent periods without bioassay data to pre-

dict nutrient limitation and explore potential changes in re-

sponse to altered nutrient loading (“Goal 2”). 

This research provides updated information specific to Chesa-

eake Bay management and research communities regarding the

patial and seasonal patterns in nutrient limitation. More broadly,

e propose that this approach can be applied in any estuary with

imilar long-term monitoring data to address similar questions. 

. Data 

.1. Bioassays 

Bioassay experiments were conducted between 1992 and

002 to characterize the response of algal growth or biomass

ccumulation to nutrient additions at six mainstem stations

 Fisher and Gustafson, 20 03 ,20 05; Fisher et al., 1999 ). These sta-

ions, namely, CB2.1, CB3.3C, CB4.3C, CB5.2, CB6.1, and CB6.4,

ad 18, 245, 264, 265, 13, and 13 bioassay samples, respectively.

emp et al. (2005) synthesized these bioassay data to characterize

he nutrient limitation class for each station-month combination

or the period of 1992–2002 ( Fig. 1 b). This data set of nutrient lim-

tation has 72 records (i.e., 6 stations x 12 months = 72 records). 

Among the limitation classes, N- and P-limitations were defined

s increases in phytoplankton productivity (PP) and biomass (PB)

ith N and P additions, respectively, normalized to controls. NP-

imitation was defined as increases in PP and PB only with simul-

aneous additions of N and P. L -limitation was defined as no dif-

erential growth response between the controls and NP treatments,

lthough all grew equally well when held at 60% light due to high

mbient N and P concentrations. To be more precise, we changed

he term “L-limitation” to “NoR” (i.e., No significant Response to

utrient additions)”. This category contains, but is not limited to, L -

imitation, although other limitation factors (e.g., trace metals and

i) were unlikely. Hereafter, the response categories reported are

oR, N-limitation, P-limitation, and NP-limitation. 

.2. Water-quality monitoring data 

The CBP partnership maintains a long-term tidal water-quality

onitoring program ( Fig. 1 a) at 100 + stations distributed along the

ainstem Bay and its tidal tributaries ( Tango and Batiuk, 2016 ;

.S. Environmental Protection Agency, 2010 ). These stations have

een sampled consistently since 1985. The field and labora-

ory methods and quality-control protocols are documented in

hesapeake Bay Program (2017) . We downloaded tidal water-

uality monitoring data for the period of 1990–2017 from the

BP Water Quality Database ( https://datahub.chesapeakebay.net/ ),

hich consists of more than three million values of various

hysical, chemical, and biological parameters. These downloaded

ata, as well as subsequently processed data, are archived in

hang (2020) . The availability of initially selected parameters at

he mainstem stations is summarized in Figure S1 . 

Downloaded data in the period of 1992–2002 were processed to

roduce an aggregated data set for each station-month combina-

ion (i.e., 6 stations x 12 months = 72 records) – see “Data Manip-

lation” in Supplementary Materials for details. This data set and

he bioassay-based data set, both having 72 records, were used in

ur empirical approach development (Goal 1). 

Similarly, downloaded data in the period of 2007–2017 were

rocessed to produce an aggregated data set for analysis for Goal
. This period was chosen because it has an average annual

ow (77,850 m 

3 s −1 ) comparable to 1992–2002 (77,570 m 

3 s −1 ),

hereby allowing for a fair comparison between the two periods

egarding nutrient limitation given the strong association of river

ow and nutrient availability. Moreover, the above data manipu-

ations for both periods were expanded to a larger suite of sta-

ions ( n = 21), including the six stations that had bioassay data

 Fig. 1 a). 

. Methods 

For Goal 1, three empirical approaches were developed to re-

ate tidal monitoring data collected during the period from 1992 to

002 to bioassay-based nutrient limitation classes at the six main-

tem stations developed using bioassay data from the same period

 Sections 3.1 - 3.3 ). We considered two non-statistical approaches

A1 and A2) that used only dissolved inorganic N (DIN) and dis-

olved inorganic P (DIP) data and one statistical approach (A3) that

sed DIN, DIP, and other monitored variables – see Fig. 2 for an

verview of these approaches and associated analyses. For Goal 2,

he selected approach was applied to tidal monitoring data from

007 to 2017 to explore potential changes in nutrient limitation

 Section 3.4 ). 

.1. Probability-based approach (A1) 

The first approach is a probability-based approach (A1). For

ach of the 72 station-month pairs, all DIN and DIP concentration

ata from 1992 to 2002 were extracted from the originally down-

oaded data. These concentrations were compared with the bloom-

imiting thresholds for DIN (0.07 mg l −1 ) and DIP (0.007 mg l −1 ),

espectively, to compute the probabilities of below-threshold DIN

nd DIP for each station and month: 

1) Probability of below-threshold DIN = count of DIN values less

than 0.07 mg l −1 / count of all DIN values; 

2) Probability of below-threshold DIP = count of DIP values less

than 0.007 mg l −1 / count of all DIP values. 

It was previously documented that concentrations above these

hresholds are associated with a lack of response to nutrient ad-

itions ( Buchanan et al., 2005 ; Fisher and Gustafson, 2003 ). These

hresholds were derived from bioassays as general reference values

or algal response, but they may not lead to accurate predictions of

utrient limitation at all locations or in all months due to spatial

nd temporal variability in controls of nutrient limitation. 

The computed probabilities were then converted to nutrient

imitation classes, as follows: 

1) If the probability of below-threshold DIN (i.e., DIN < 0.07 mg

l −1 ) ≥ 50%, class = N; 

2) If the probability of below-threshold DIP (i.e., DIP < 0.007 mg

l −1 ) ≥ 50%, class = P; 

3) If both probabilities ≥ 40%, class = NP; 

4) Else, class = NoR. 

These probability-based classes were compared with the

ioassay-based classes ( n = 72) to compute the classification rate

i.e., [number of matched cases / 72] x 100), which is served as a

uantitative measure of the performance of approach A1. 

.2. Index-based approach (A2) 

The second approach is an index-based approach (A2). Like A1,

or each of the 72 station-month pairs, all DIN and DIP concen-

ration data from 1992 to 2002 were extracted from the origi-

ally downloaded data. These concentrations were compared with

https://datahub.chesapeakebay.net/
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Fig. 2. Overview of the three empirical approaches (A1, A2, A3) considered under Goal 1. For approach A3, classification and regression trees (CART), random forest (RF), and 

boosted trees (BT) were evaluated for ten different model forms, respectively (see Table 1 ). 
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the bloom-limiting thresholds to compute N and P indices, as

follows: 

1) If DIN < 0.07 mg l −1 , N index = 1 and P index = 0; 

2) If DIP < 0.007 mg l −1 , N index = 0 and P index = 1; 

3) If both conditions are met, N index = 0.5 and P index = 0.5; 

4) If neither condition is met, N index = 0 and P index = 0. 

For each station-month pair, the relevant indices were averaged

over the period of record to compute the aggregated indices, which

were converted to nutrient limitation classes, as follows: 

1) If N index ≥ 0.5, class = N; 

2) If P index ≥ 0.5, class = P; 

3) If both indices ≥ 0.4, class = NP; 

4) Else, class = NoR. 

These index-based classes were compared with the bioassay-

based classes ( n = 72) to compute the classification rate of ap-

proach A2. 

3.3. Tree-based approach (A3) 

The third approach is a statistical approach (A3), which is

centered on the classification and regression tree (CART). CART

has three unique advantages: (1) it is a well-established machine

learning method for classification ( Breiman, 1984 ; Loh, 2014 ) and

has been widely used in hydrological and marine studies (e.g.,

Testa et al., 2019 ; Zhang et al., 2019 ), (2) it can consider multi-

ple independent variables simultaneously and thus utilize infor-

mation beyond DIN and DIP concentrations or indices (e.g., wa-

ter temperature), and (3) it allows more flexibility in relating the

bioassay-based nutrient limitation classes (our response variable)

to the independent variables, including multiple cutoffs and inter-

actions (e.g., a variable can appear multiple times on the tree with

different splitting thresholds). 

We also considered more advanced tree approaches, namely,

random forest (RF) and boosted trees (BT). RF builds multiple trees

and glues them together to get a potentially more stable predic-
ion. By contrast, BT grows trees sequentially – i.e., each tree is

rown using information from previously grown trees. Our results

howed that RF and BT did not have higher classification rates than

ART ( Figure S3 ). Thus, CART was chosen as A3 for its ability to il-

ustrate decision trees. 

.3.1. Model forms 

All monitored parameters in the processed data set

 Section 2.2 ) were evaluated for collinearity and relative im-

ortance. Correspondingly, ten model forms were proposed, with

ncreasing levels of complexity (i.e., covariates were added se-

uentially) ( Table 1 ). In model 10 (“full model”), the covariates

re above-mentioned N index (indexN) and P index (indexP),

ater temperature (WTEMP, °C), TN:TP molar ratio (TNTP.ratio),

IP concentration (DIP, mg l −1 ), salinity (SALINITY, ppt), Secchi

isk depth (SECCHI, m), chlorophyll-a (CHLA, μg l −1 ), dissolved

ilicate (SIF, mg l −1 ), January-May average streamflow from the

usquehanna River (Q15, m 

3 s −1 ; where Q = flow, 1 = January,

nd 5 = May), and Season. We excluded other variables (e.g.,

IN, TN, TP, DIN:DIP, and dissolved oxygen) because they had

a) low variable importance, (b) high correlations (i.e., Spearman

orrelation > 0.85) with one or more of the variables already

ncluded, or (c) large presence of below detection-limit values

in the case of DIN; Figure S2 ). Note that WTEMP is a numerical

ariable that accounts for seasonal changes in water temperature,

hereas Season is a categorical (i.e., discrete) variable for calendar

onth that characterizes features of the annual cycle affecting

utrient limitation (e.g., day length and daylight). 

.3.2. Model parameterization 

The CART tree includes the top node (which is at the top

f the tree, containing all data records), terminal nodes (which

re at the bottom of the tree), and intermediate nodes. At every

ode except the terminal nodes, CART evaluates all possible split

oints for each predictor variable and selects the predictor variable

nd split point that leads to two most dissimilar subgroups. The

elected variable and split point correspond to the splitting vari-

ble and the splitting rule, respectively. Ideal CART trees should not
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Table 1 

Model forms used for the tree-based approaches. a 

Model No. Model form 

#1 Class ~ indexN + indexP 

#2 Class ~ indexN + indexP + WTEMP 

#3 Class ~ indexN + indexP + WTEMP + TNTP.ratio 

#4 Class ~ indexN + indexP + WTEMP + TNTP.ratio + DIP 

#5 Class ~ indexN + indexP + WTEMP + TNTP.ratio + DIP + SALINITY 

#6 Class ~ indexN + indexP + WTEMP + TNTP.ratio + DIP + SALINITY + SECCHI 

#7 Class ~ indexN + indexP + WTEMP + TNTP.ratio + DIP + SALINITY + SECCHI + CHLA 

#8 Class ~ indexN + indexP + WTEMP + TNTP.ratio + DIP + SALINITY + SECCHI + CHLA + SIF 

#9 Class ~ indexN + indexP + WTEMP + TNTP.ratio + DIP + SALINITY + SECCHI + CHLA + SIF + Q15 

#10 Class ~ indexN + indexP + WTEMP + TNTP.ratio + DIP + SALINITY + SECCHI + CHLA + SIF + Q15 + Season 

a In model 10 (“full model”), the covariates are N index (indexN), P index (indexP), water temperature (WTEMP, °C), TN:TP 

molar ratio (TNTP.ratio), DIP concentration (DIP, mg l − 1 ), salinity (SALINITY, ppt), Secchi disk depth (SECCHI, m), chlorophyll-a 

(CHLA, μg l − 1 ), dissolved silicate (SIF, mg l − 1 ), January-May average streamflow from Susquehanna River (Q15, m 

3 s − 1 ; 

where Q = flow, 1 = January, and 5 = May), and Season. Parameters not displayed in model 10 were excluded because they 

had (a) low variable importance, (b) high correlations (i.e., spearman correlation > 0.85) with one or more of the variables 

already included, or (c) large presence of below detection-limit values (in the case of DIN; Figure S2). 
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e too large (over-fit) or too small (poorly-fit), and should have in-

ormative splitting rules and pure terminal nodes. Because our data

et has only 72 records (6 stations x 12 months), we set the CART

arameter minsplit to six and maxdepth to five. minsplit defines the

inimum number of observations that must exist in a tree node

n order for a split to be attempted. maxdepth defines the maxi-

um depth of any node of the final tree (root node = depth zero).

e set the complexity parameter cp to its default value, 0.01. This

eans that only splits that decreased the overall lack of fit by a

actor of 0.01 or more were attempted. CART analyses were con-

ucted using the “rpart” package ( Therneau and Atkinson, 2019 ). 

.3.3. Cross validation 

To quantify the performance of the proposed model forms, K-

old cross-validation analysis was conducted, which can give in-

ights on how well the model generalizes to a new data set. K

efines the number of subgroups that the entire data set is split

nto: 

(1) K = 72: leave 1 of 72 out each time, essentially the leave-

one-out cross-validation (LOOCV) approach. In each itera-

tion, one data record was left out and treated as “new data”.

The remaining 71 data records were used to build a model

and that model was used to make the prediction for the left-

out data. In total, 72 models were built. From each of the 72

models, prediction was made for the left-out case, resulting

in a vector of 72 predicted nutrient limitation classes. 

(2) K = 24: leave 3 of 72 out each time; 24 models were built. 

(3) K = 12: leave 6 of 72 out each time; 12 models were built. 

(4) K = 6: leave 12 of 72 out each time; 6 models were built. 

For each K, predictions were compared with the bioassay-based

utrient limitation classes ( n = 72) to compute the classification

ate for each model form to determine the best model forms for

ART. 

.3.4. Ensemble of CART models 

The selected CART model forms have different decision trees

nd different best-performing zones (locations and months). Thus,

n ensemble approach was developed to combine the strengths of

he candidate models. Essentially, this approach compares predic-

ions of nutrient limitation for each station-month pair from each

andidate model and selects the predicted nutrient limitation class

hat has the highest probability. For cases where predictions from

he three candidate models are identical, it reports that prediction.

or cases where model predictions diverge, it extracts the proba-

ilities of each model’s prediction and reports the prediction with

he highest probability. 
.3.5. Uncertainty analysis 

To quantify the uncertainties associated with the predictions of

ach CART model form as well as the ensemble model, predictions

rom the LOOCV approach were utilized. Specifically, each set of

redictions from each of the 72 LOOCV models was considered

ne realization. The likelihood of the predicted nutrient limitation

lass was computed as “(count of occurrence / 72) x 100”. If all

2 LOOCV models predict the same class, the likelihood would be

72/72) x 100 = 100%. In this work, a predicted nutrient limitation

lass is considered “uncertain” if its likelihood is less than 70%. 

.4. Application to new periods 

The ensemble approach of CART was applied to new periods

nd locations to predict nutrient limitations. Specifically, 

• 2007–2017 for the six stations that had bioassay data. This pe-

riod was chosen because it has an average annual freshwater

flow entering the Bay (77,850 m 

3 s −1 ) comparable to 1992–

2002 (77,570 m 

3 s −1 ), according to the annual mean fresh-

water flow entering the Bay ( https://www.usgs.gov/centers/cba/

science/freshwater- flow- chesapeake-bay ). 
• 2007–2017 for the full set of mainstem stations ( n = 21)

( Fig. 1 a). 

In addition, both hydrologic conditions and temporal periods

re expected to affect nutrient availability, thereby leading to

hanges in nutrient limitation in the Bay. To isolate these effects,

e conducted two controlled experiments with subsets of the

onitoring data representative of different conditions: 

• In the first experiment, we fixed the period to 2003–2017

and varied the hydrologic condition. Each year in 2003–2017

was classified as wet, dry, or average, depending on the an-

nual mean freshwater flow entering the Bay ( https://www.usgs.

gov/centers/cba/science/freshwater- flow- chesapeake-bay ). Aver- 

age years have annual flows falling between the 25th and 75th

percentiles of the entire record. 
• In the second experiment, we fixed the hydrologic condition

by selecting four 2-year periods that had similar annual mean

freshwater flows to the Bay, namely, 1990–1991 (79,800 m 

3 

s −1 ), 1998–1999 (75,800 m 

3 s −1 ), 20 07–20 08 (76,90 0 m 

3 s −1 ),

and 2013–2014 (78,650 m 

3 s −1 ). 

Finally, the CART-predicted nutrient limitation classes from

hese analyses were converted to nutrient limitation maps, using

 rectangular-grid approach that is illustrated in Figure S4 . 

https://www.usgs.gov/centers/cba/science/freshwater-flow-chesapeake-bay
https://www.usgs.gov/centers/cba/science/freshwater-flow-chesapeake-bay
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Fig. 3. Nutrient limitation diagrams for the six mainstem stations of Chesapeake Bay, comparing bioassay-based nutrient limitation classes and (a) probability-based classes 

(approach A1) or (b) index-based classes (approach A2). Mismatches are marked by “∗”. 
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4. Results 

4.1. Performances of A1 and A2 (Goal 1) 

The probability-based approach (A1) showed a classification

rate of 43%, where 31 predictions based on tidal monitoring data

matched bioassay-based limitation classes out of 72 cases ( Fig. 3 a).

This approach matched most of the bioassay-based classes at the

six stations in January through May but matched very poorly in

July through November. The index-based approach (A2) showed a

classification rate of 57% (i.e., 41 matches) ( Fig. 3 b). While A2 had a

higher classification rate than A1, it also showed widespread mis-

matches in July through November. 

4.2. Selection of tree models (Goal 1) 

CART model forms were selected based on the cross-validation

analyses. Models 4 and 7 both had the highest classification rate

(85%) based on LOOCV ( Figure S3 ). Other K-fold cross-validation

analyses showed that models 4, 7, and 10 were generally better

than or comparable to the other model forms ( Figure S5 ). Thus,

these three models were selected as our candidate models for

CART. 

The candidate models for CART showed much improved per-

formance compared to A1 and A2. With LOOCV, models 4, 7, and

10 showed a classification rate of 85%, 85%, and 82%, respectively

( Figure S6 ). Mismatches tended to be on the edges of the diagram

(i.e., colder months and salinity extremes) and associated with the

inability to discern NoR from P-limitation or NP-limitation from

single nutrient limitation. Model 10 matched with bioassay-based

classes better than model 4 and model 7 at CB6.1 and CB6.4 (the

two southernmost stations) but worse at CB2.1 (the most upstream

station). With the full data set, models 4, 7, and 10 showed a clas-

sification rate of 96%, 94%, and 97%, with only three, four, and two

mismatches, respectively ( Figure S7 ). 
.3. Tree plots of selected models (Goal 1) 

Tree plots were produced to split the entire data set to more

ure subsets. For model 4 ( Fig. 4 ), TNTP.ratio is the top splitting

ariable, with WTEMP, indexN, and DIP as additional splitting vari-

bles. At the top node, cases are split to N-limitation (node 2) if

NTP.ratio < 51 and P-limitation (node 3) if TNTP.ratio ≥ 51. Node

 is split by WTEMP, with warmer months ( ≥ 12 °C) classified as

-limitation (node 4) and colder months ( < 12 °C) as NP-limitation

node 5). At node 5, cases are split to P-limitation (node 11) if in-

exN < 0.35 and NP-limitation (node 10) if indexN ≥ 0.35. At node

, cases are split to three classes when WTEMP < 7.5 °C, depend-

ng on DIP. Specifically, these classes are NoR (if DIP ≥ 0.0062 mg

 

−1 ), NP-limitation (DIP < 0.0018 mg l −1 ), and P-limitation (DIP ≥
.0018 and < 0.0062 mg l −1 ). At the bottom, there are seven ter-

inal nodes and five of them are pure (with a unique limitation

lass). For model 7 ( Figure S8 ), TNTP.ratio is also the top splitting

ariable, with WTEMP, indexP, DIP, and CHLA as additional splitting

ariables. Like model 4, node 2 is split by WTEMP, with warmer

onths ( ≥ 12 °C) classified as N-limitation and colder months ( <

2 °C) as NP-limitation. This tree has eight terminal nodes and six

f them are pure. For model 10 ( Figure S9 ), TNTP.ratio is again the

op splitting variable, with Season, indexN, DIP, and CHLA as addi-

ional splitting variables. In general, this tree is similar to model

 and also has eight terminal nodes. One key difference is that

TEMP is replaced by Season as a splitting variable. 

.4. The ensemble approach (Goal 1) 

Given that the three candidate models have different decision

rees and different best-performing zones (locations and months)

 Figures S6-S7 ), the ensemble approach can combine the strengths

f the candidate models. The ensemble approach achieved a classi-

cation rate of 89% with LOOCV (8 mismatches) and 99% with the

ull data set (1 mismatch), both of which were higher than any
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Fig. 4. CART tree plot of model 4 using the full data set. At each node, the four fractional numbers represent the probabilities of N-limitation, NoR, NP-limitation, and 

P-limitation, respectively, and the percentage number represents the proportion of data in that node (which is 100% at the top node). 

Fig. 5. Nutrient limitation diagrams for the six mainstem stations of Chesapeake Bay, comparing bioassay-based nutrient limitation classes and CART-based classes (approach 

A3) under (a) LOOCV and (b) the full data set. The CART-predicted classes were obtained from the ensemble approach that incorporated predictions from all three candidate 

models. Mismatches are marked by “∗”. 
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f the candidate models ( Fig. 5 ). Consequently, predictions from

he ensemble approach resulted in nutrient limitation maps that

losely matched the bioassay-based limitation map for the period

f 1992–2002 ( Fig. 6 ). 

.5. Comparison of decadal periods (Goal 2) 

For the six stations that had bioassay data, 10 of the 72 station-

onth pairs showed changes in nutrient limitation ( Table 2 ; Fig-
re S10 ), including switches from NoR to P-limitation ( n = 2; up-

er Bay in winter-spring), P-limitation to N-limitation ( n = 4; up-

er and middle Bay in summer-fall), NP-limitation to P-limitation

 n = 2; lower Bay in winter-spring), and N-limitation to NP-

imitation ( n = 2; lower Bay in winter-spring). These cases all have

igh likelihoods based on the uncertainty analysis ( Table 2 ). Over-

ll, nutrient limitation showed expanded areas of N-limitation and

ontracted areas of NoR in 2007–2017 compared to 1992–2002

 Fig. 7 ). 
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Fig. 6. Nutrient limitation maps for the mainstem Chesapeake Bay for the period of 1992–2002, as based on (a) bioassay data, (b) CART with LOOCV, and (c) CART with the 

full data set. The CART-based maps were developed based on the ensemble approach that incorporated predictions from all three candidate models. 
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In our extended analysis to the 21 tidal monitoring sta-

tions, including the six stations that had bioassay data, 30 pairs

(12% of the 252 station-month pairs) showed changes in nu-

trient limitation. These changes are generally similar in direc-

tions to those reported above (i.e., from NoR to P-limitation,

P-limitation to N-limitation, NP-limitation to P-limitation, and

N-limitation to NP-limitation). Moreover, these cases all have

high likelihoods based on the uncertainty analysis. The result-

ing maps ( Figure S11 ), like Fig. 7 , showed expanded areas of N-
imitation and contracted areas of NoR in 2007–2017 compared to

992–2002. 

.6. Comparison of different conditions (Goal 2) 

Two controlled experiments were conducted to investigate

hanges in nutrient limitation as a function of hydrology or tempo-

al periods. In the first experiment, we fixed the analysis period to

003–2017 and varied the hydrologic condition ( Fig. 8 ). Compared
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ith wet years, dry years expanded the areas of NP-limitation (ad-

itional 10 out of 252 cases; + 4%) and N-limitation ( + 12%) and

educed the areas of NoR ( −6%) and P-limitation ( −10%). Specifi-

ally, a majority of NoR (in wet years) switched to P-limitation (dry

ears) in the upper Bay in winter months (December-February). N-

imitation extended from the July-September window (wet years)

urther into November before shifting back to P-limitation in De-

ember (dry years) along most of the Bay’s axis. Moreover, addi-

ional cases of NP-limitation (dry years) occurred primarily in lo-

ations and months that were P-limited (wet years). 

In the second experiment, we fixed the hydrologic condition

y selecting four 2-year periods that had similar annual freshwa-

er flows to the Bay ( Fig. 9 ). Compared with 1990–1991, the lat-

er periods all showed contracted areas of P-limitation ( −9%) and

xpanded areas of NP-limitation ( + 6% to + 10%), with the latter oc-

urring primarily in locations and months that had previously been

-limited. 

. Discussion 

Large-scale nutrient reduction goals have been in place

or decades as targets to restore water quality and habitat

ealth in Chesapeake Bay and many other estuaries worldwide

 Boesch et al., 20 01 ; Cloern, 20 01 ; Kemp et al., 20 09 ; Boesch, 2019 ;

alone and Newton, 2020 ). Management actions resulting in re-

uctions of nutrient loads may have led to increases in nutrient

imitation of phytoplankton growth in the estuary. We demonstrate

hat CART can be used to characterize nutrient limitation from

ong-term water-quality monitoring data on much broader geo-

raphic and temporal scales than would be feasible using bioas-

ays, providing a new tool for informing water-quality manage-

ent. The CART approach can be adapted to other waterbodies

here long-term bioassays and water-quality monitoring data sets

re available, although the selection of water-quality variables and

odel forms may vary based on data availability in specific sys-

ems. Below, we provide a discussion on the validity of the CART

nsemble approach and the applications of the approach specific

o Chesapeake Bay. 

.1. CART was selected as the empirical approach to relate tidal 

ater-quality data to bioassay-based measures of nutrient limitation 

Goal 1) 

DIN and DIP concentrations (A1) or their indices (A2) alone can-

ot satisfactorily reproduce the bioassay-based nutrient limitation

atterns ( Fig. 3 ). Although the improved performance by A2 over

1 implies that nutrient indices are better predictors than nutri-

nt concentrations, both approaches failed to match the bioassay-

ased results in July through November. This may reflect the ef-

ects of temperature and light availability on phytoplankton growth

r reveal that the low nutrient concentrations in summer and fall

re less reflective of nutrient availability in these seasons with high

urnover rates associated with biogeochemical cycling of nutrients

e.g., water-column regeneration, sediment release of P, denitrifica-

ion) ( Conley, 1999 ; Testa and Kemp, 2012 ; Testa et al., 2018 ). 

Compared with A1 and A2, tree-based approaches (A3) showed

ubstantially improved performance in matching the bioassay-

ased patterns because of their ability to incorporate additional

ariables related to phytoplankton growth ( Figures S6-S7 ). The tree

lots of the three selected CART models ( Figs. 4 , S8, and S9 ) illus-

rated how the original full data were split to more homogeneous

ubsets and these trees had several consistencies. First, each tree

as seven or eight terminal nodes and only two of them are not

ure, demonstrating the effectiveness of CART for classifying the

esponse variable (i.e., nutrient limitation class). Second, TNTP.ratio

s always the top splitting variable on the trees and cases with
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Fig. 7. CART-predicted nutrient limitation maps for the mainstem Chesapeake Bay, comparing two decadal periods: (a) 1992–2002 and (b) 2007–2017. These maps were 

developed based on the ensemble approach that incorporated predictions from all three candidate models. 

Fig. 8. CART-predicted nutrient limitation maps for the mainstem Chesapeake Bay for the period of 2003–2017, comparing (a) wet years and (b) dry years. These maps were 

developed based on the ensemble approach that incorporated predictions from all three candidate models. 
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smaller TNTP.ratio values are classified as N-limitation while cases

with larger TNTP.ratio values are classified as P-limitation. This

splitting rule makes sense, because a larger TNTP.ratio indicates

more N relative to P, leading to a high potential for P-limitation

and low potential for N-limitation. Although the splitting threshold

(N:P = 51:1) is much larger than the Redfield Ratio (N:P = 16:1)
 Redfield, 1958 ), the discrepancy may reflect the contributions of

articulate N and P to TN and TP in regions where external in-

uts of nutrients are substantial. Although TNTP.ratio is always the

rst splitting variable on the trees, it alone cannot satisfactorily

xplain the spatial and temporal variability in nutrient limitation.

n this regard, a third consistency is the inclusion of seasonal-
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Fig. 9. CART-predicted nutrient limitation maps for the mainstem Chesapeake Bay for four sub-periods that have similar hydrologic conditions: (a) 1990–1991, (b) 1998–1999, 

(c) 20 07–20 08, and (d) 2013–2014. These maps were developed based on the ensemble approach that incorporated predictions from all three candidate models. 
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t  
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m  
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p  
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t  
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m  

c  

N  

o  
ty, as represented by either WTEMP (numerical) or Season (cat-

gorical). This indicates the importance of seasonal shifts in fea-

ures that directly or indirectly influence phytoplankton growth.

hese features may include temperature effect on maximum phy-

oplankton growth rates, day length and daylight available to sup-

ort photosynthesis, seasonal changes in stratification and vertical

ixing, seasonal shifts in plankton community composition, en-

anced grazing at higher temperatures, and seasonal alterations of

he light field ( Droop, 1983 ; Fisher et al., 1999 , 1992 ; Harding et al.,

016 ; Kemp et al., 2005 ; Malone et al., 1996 ). 

The ensemble approach effectively combined the strengths of

he candidate models and had a classification rate higher than any

f the candidate models ( Figs. 5 - 6 ). It is not surprising that mis-
atches were not eliminated with the ensemble approach ( Fig. 5 a),

hich is inevitably constrained by the precision of bioassay exper-

ments, the inherent variability in water samples, and the sam-

le size of each limitation class. The mismatches are located on

he edges of the limitation diagram (colder months and salin-

ty extremes), generally in transition zones between more con-

istently defined limitation factors. Two mismatches are related

o P-limitation versus NoR, which are often difficult to distin-

uish in the bioassays ( Fisher and Gustafson, 20 03 ,20 05). Four mis-

atches are related to NP-limitation, which persisted from the

andidate models to the ensemble approach, probably because

P-limitation is the least frequent in the bioassay data (6 out

f 72 cases) and NP-limitation cases are associated with CB6.1
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and CB6.4, which have very limited bioassay samples (13 each,

compared to 200 + samples at CB3.3C, CB4.3C, and CB5.2). More-

over, CB6.1 and CB6.4 are most influenced by both riverine and

Atlantic Ocean water inputs, and the NP-limitation mismatches

occur at the boundaries of seasonal transitions from P to N

limitation. 

This research demonstrates that CART, when combined with

long-term water monitoring data, can be used as an assessment

tool for nutrient limitation. While direct bioassays are the gold-

standard, they are time intensive and much more costly than

water-quality monitoring programs can sustain. Instead, CART can

be used to estimate nutrient limitation from parameters routinely

part of water-quality monitoring protocols, greatly expanding the

geographic and temporal extent of these assessments to guide

water-quality management. However, we emphasize that CART

should be used to fill in the gaps given limited funding resources

for bioassays, rather than replace bioassays. An underlying assump-

tion of CART is the stationarity in the derived relationships be-

tween nutrient limitation and explanatory variables. This caveat

can inadvertently force predictions for new periods to strictly fol-

low a particular splitting rule to fall into a fixed terminal node at

the bottom of the tree, regardless of any changes in variables ir-

relevant to that splitting rule, thereby reducing the likelihood of

detecting changes in nutrient limitation. Furthermore, variables se-

lected by the tree may change over time (e.g., WTEMP), which can

confound the accuracy of predictions for new periods. In these re-

gards, new bioassay experiments can be particularly useful for re-

calibrating and updating the CART models. 

5.2. Application of the CART ensemble approach to new periods 

provided insights on changes in nutrient limitation patterns and 

effects of nutrient reductions (Goal 2) 

Predictions from the ensemble approach showed modest

changes (10 out of 72 cases) in nutrient limitation patterns at the

six stations that had bioassay data ( Figure S10; Table 2 ). Our ex-

tended analysis of the 21 tidal stations showed similar changes

( Figure S11 ), adding further confidence to these results. We em-

phasize that these patterns should be viewed as the overall behav-

ior of nutrient limitation for the specified periods and these pat-

terns can change between different hydrologic conditions or tem-

poral periods. These estimated changes in nutrient limitation were

further compared with estimated changes in monitored nutri-

ent concentrations between the 1992–2002 period and the 2007–

2017 period ( �), as computed with Generalized Additive Models

( Murphy et al., 2019 ) ( Table 2 ). For example, the switch from P-

limitation to N-limitation at CB2.1 in September is consistent with

its declining DIN concentration ( � = −0.080 mg l −1 ; p < 0.01)

and increasing DIP concentration ( � = 0.003 mg l −1 ; p = 0.0 6 6).

Similarly, the switch from NoR to P-limitation at CB3.3C in both

January and December is consistent with its declining DIP concen-

tration ( � = −0.003 mg l −1 , p ≤ 0.053). These consistencies add

further confidence to the estimated changes in nutrient limitation,

although nutrient concentrations alone do not always explain the

estimated changes in nutrient limitation. 

Nutrient limitation maps showed expanded areas of N-

limitation and contracted areas of NoR in 2007–2017 compared

to 1992–2002 ( Fig. 7 ). These changes imply that some parts

of the Bay have become less nutrient-saturated, consistent with

other observed water-quality improvements that have been linked

to nutrient reductions ( Harding et al., 2016 ; Lefcheck et al.,

2018 ; Murphy et al., 2011 ; Testa et al., 2014 ; Zhang et al.,

2018 ). This implication is also consistent with the expected im-

pacts of management efforts intended to improve water quality

by reducing the human impact on the landscape and address-

ing legacy pollution as well as pressures from steady popula-
ion growth in the watershed ( Chesapeake Bay Program, 2020 ).

hese effort s have been pursued through the implementation

f wastewater, agricultural, atmospheric, and urban stormwater

ource controls to address the pollutant reduction goals outlined

n the Chesapeake Bay Partnership Agreements ( Chesapeake Ex-

cutive Council, 1983 , 1987 , 20 0 0 , 2014 ) and the Chesapeake Bay

MDL ( U.S. Environmental Protection Agency, 2010 ). In response

o management actions such as wastewater treatment plant up-

rades ( Boynton et al., 2008 ), reductions in fertilizer applications

 Keisman et al., 2018 ), and reductions in N emissions under the

lean Air Act ( Eshleman et al., 2013 ), N load has decreased across

he Bay watershed over the last three decades ( Ator et al., 2019 ;

hanat et al., 2016 ; Chanat and Yang, 2018 ; Hirsch et al., 2010 ;

hang et al., 2016a , 2015 ), which may have led to expanded areas

f N-limitation in the Bay, especially in seasons of low freshwater

nput. 

A strength of the CART approach is its ability to predict nu-

rient limitation for different hydrologic conditions or temporal

eriods. Our results showed that, for the same temporal period

2003–2017), dry years had expanded areas of NP-limitation and

-limitation and contracted areas of NoR and P-limitation, com-

ared to wet years ( Fig. 8 ). A majority of NoR (in wet years)

witched to P-limitation (dry years) in the upper Bay in winter

onths (December-February). Moreover, additional cases of NP-

imitation (dry years) occurred primarily in locations and months

hat were P-limited (wet years). These changes reflect the fact that

ry conditions are associated with lower nutrient delivery to the

ay ( Boynton and Kemp, 20 0 0 ), thereby creating more opportuni-

ies for nutrient limitation to occur. Such an effect of hydrologic

ondition has been previously observed in bioassay experiments

y Fisher et al. (1999) and Fisher and Gustafson (2005) . Our re-

ults also showed that, under similar hydrologic conditions, more

ecent periods had expanded areas of NP-limitation and contracted

reas of P-limitation, compared to the earliest period (1990–1991)

 Fig. 9 ). The expansion of NP-limitation occurred primarily in lo-

ations and months that had previously been P-limited. This indi-

ates that N concentrations have been reduced to its limiting level

n those cases, likely due to reductions in N load. The reduction

n P-limited areas is consistent with the observations that (1) TP

oad to the Bay has increased since the mid-1990s, largely due

o reduced trapping of sediment and associated P by Conowingo

eservoir as it neared its sediment storage capacity ( Hirsch, 2012 ;

angland, 2015 ; Zhang et al., 2013 , 2016b ) and that (2) dissolved

rthophosphate to the Bay has increased substantially recently

 Fanelli et al., 2019 ). 

Despite these changes, the overall seasonal and spatial pat-

erns of nutrient limitation in Chesapeake Bay remain similar to

he 1992–2002 period ( Kemp et al., 2005 ). NoR is common in

he upper Bay during winter, when daylight is short and where

alinity is low, water is colder and more turbid, and ambient nu-

rient concentrations are high. (For example, our data at CB2.1

how that winter DIN and DIP concentrations are roughly 14-times

nd 2-times higher than the bloom-limitation thresholds, respec-

ively.) Algal growth in winter does not appear to be fast enough

o reduce the high nutrient concentrations to bloom-limiting lev-

ls in either the experimental controls or the NP treatments in the

ioassays, leading to no differential growth response between the

ontrols and treatments. P-limitation is common in spring when

emperature increases and DIN:DIP ratios are high in river flows.

nder these conditions, algae are growing faster and taking up

ore nutrients, bringing P concentrations to limiting levels. N-

imitation is common throughout the Bay in summer and early

all due to depletion of DIN from surface waters and high release

ates of DIP from the bottom (anoxic) sediments. NP-limitation

nly occurs in the high-salinity, oceanic-influenced lower Bay,

hen DIN and DIP concentrations are both below their limit-
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ng levels and hence algal growth is responsive to both N and P

dditions. 

Overall, these patterns in nutrient limitation reinforce a dual

utrient management strategy for controlling nutrient enrichment

n Chesapeake Bay. The implications of uneven nutrient manage-

ent have been seen in the North Sea, where it is reported that

 more effective reduction of P than N load has led to a large im-

alance in the N:P stoichiometry of coastal waters, resulting in an

ffshore gradient from P- to N-limitation ( Burson et al., 2016 ). Al-

hough estuaries often exhibit strong seasonal and spatial varia-

ions in nutrient limitation, detection of shifts in nutrient limita-

ion can provide important indicators of estuarine response to nu-

rient reductions. For example, it is predicted that P-limited areas

t the continental shelf of the northern Gulf of Mexico would ex-

end by over 50% in May and July if DIP concentration in the Mis-

issippi and Atchafalaya Rivers is reduced by half ( Laurent et al.,

012 ). While some of the estimated changes in nutrient limitation

n Chesapeake Bay may be an early indication on the impact of

utrient reductions, further reductions are likely needed to reduce

utrient concentrations to limiting levels to achieve a less nutrient-

aturated ecosystem. 

. Conclusions 

We analyzed historical data from nutrient bioassays and data

rom the CBP long-term water-quality monitoring network to

evelop empirical approaches for predicting nutrient limitation.

ART reproduced the bioassay-based nutrient limitation patterns

n 1992–2002 much better than two non-statistical approaches

A1 and A2), because it can utilize relevant variables beyond DIN

nd DIP. The ensemble approach of the three selected CART mod-

ls satisfactorily reproduced the bioassay-based results (classifica-

ion rate = 99%). Predictions from the ensemble approach showed

odest changes in nutrient limitation, with expanded areas of N-

imitation and contracted areas of NoR in 2007–2017 compared

o 1992–2002. These changes imply that long-term reductions in

itrogen load have led to expanded areas with nutrient-limited

hytoplankton growth, reflecting long-term water-quality improve-

ents in the context of nutrient enrichment. However, nutri-

nt limitation patterns remain unchanged in the majority of the

ainstem, suggesting that nutrient loads should be further re-

uced to achieve a less nutrient-saturated ecosystem. These in-

ights can help inform management strategies called for in the

hesapeake Bay TMDL, explain changes in tidal water quality, and

acilitate future refinements of Chesapeake Bay estuarine mod-

ls. These results also indicate the need for conducting addi-

ional bioassay experiments for model validation and enhance-

ent. More broadly, this research highlights the value of maintain-

ng a long-term water-quality monitoring network and provides an

xample on how tidal monitoring data can be assessed in other

stuaries. 
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