Stream Restoration and Sediment Delivery Update

Gary Shenk
CBPO
Urban Stormwater Workgroup
2/20/18

Steady State Phase 6 Model Structure

Keep It Simple

Edge of Field

*

Land Use Acres

*

BMPs

*

Land to Water

*

Direct Loads

Stream Delivery

*

River Delivery

Include Everything

Sediment Delivery Ratio

River Delivery Calibrated in the HSPF model

Stream Sediment Effects

Chesapeake Floodplain Network and others

No net change

Stream Delivery – Developed

Center for Watershed Protection Work

Averages about 0.5 for developed areas

Sediment Sparrow

- Rivers are not a significant sediment sink except
 - Coastal Plain rivers larger than 120 cfs
 - Reservoirs

NSQD - Impervious Load

 Impervious is 3x the sediment load according to outfall data in the NSQD

NSQD - Impervious Load

• Impervious is 7x the sediment load according to stream data in the NSQD

Summary of stream science

- Stream erosion is a significant source everywhere
- Erosion is balanced by floodplain deposition in nondeveloped areas
 - That doesn't mean that all of the eroded sediment is deposited!
- Stream erosion is a function of imperviousness in developed areas
- Reservoirs have a deposition effect

Export + Impervious - Reservoir - Restoration

Export + Impervious – Reservoir – Restoration

Export + Impervious - Reservoir - Restoration - Scenario

Export + Impervious - Reservoir - Restoration - Scenario

Summary

- Phase 6 sediment built from detailed analysis
- Stream erosion is treated as a source
- Stream deposition is treated as a reduction percentage
- Stream restoration reduces the stream source and is limited by the total erosion loads available
- Erosion loads are a significant part of the total loads to tidal waters

Extra slides

RUSLE => R * K * LS * C * P

- R = Runoff
- K = Erodibility
- LS = slope length
- C = Cover
 - By land use and Land-River segment
- P = Practice
 - = 1 since no action loads

Evaluated at 10 meter resolution

Agricultural C-management factor

Non-Agricultural C factors

Construction

 Construction is set at 12 tons/acre/year as a global average by the Sediment and Erosion Control BMP Panel (Clark and others 2014).

The local load is a ratio of turfgrass

Sediment Delivery Ratio

Interconnectivity Metric

Sediment Delivery Ratio

