Climate Change Assessment – CBPO Watershed Modeling Update

CHAMP Meeting – May 2019

Gopal Bhatt¹ and Lewis Linker²

¹ Penn State, ² US EPA – Chesapeake Bay Program Office

Presentation outline

1. A brief progress update on the 2019 CBP climate change assessment – (a) land cover land use change impacts; (b) 2025, 2035, 2045, 2055

It was presented to the Modeling Workgroup in April

Rainfall (% delta change)

Kyle Hinson

Temperature (°C delta change)

2. 3 new scenarios for CHAMP – based on updated metric for KKZ Ranking analyses (i.e. Nov-Jun rainfall, May-Oct temperature)

FMA rainfall, JJA temperature was previously used

1. Evaluation of land cover land use change impacts on climate change assessment

- Land use effects the baseline nutrients and sediment loads, and therefore the marginal differences in loads with climate change.
- The future projections of land use and populations on sewer and septic systems were estimated using Chesapeake Bay Land Change Model (CBLCM Version 4 – Claggett, P., et al.)

Land use acres - Chesapeake Bay Watershed

Population - Chesapeake Bay Watershed

WIP2 level of effort on 2025 vs. 2010 land use

Marginal Differences in Flow

2025, 2035, 2045, & 2055 Summary - Climate

Marginal Differences in Sediment Delivery

Marginal Differences in Nitrogen Delivery

Marginal Differences in Phosphorus Delivery

2. CHAMP Climate Change Scenarios

List of scenarios for CHAMP climate change assessment to investigate the impact of downscaling, and watershed model responses

SNo.	SCENARIO NAME	SCENARIO DESCRIPTION
01	MFBASE1808CXXNONERXXMXX	Baseline representing calibration 1991-2000 condition
02	MFBASE1808C25T88YR45P50	2025 Trend Rainfall, BCSD RCP 4.5 Ensemble Median temperature
03	MFBASE1808C25MACAR85M27	2025 MACA RCP 8.5 IPSL-CM5A-MR (KKZ Rank = 1)
04	MFBASE1808C25MACAR85M31	2025 MACA RCP 8.5 MIROC5
05	MFBASE1808C25BCSDR85M09	2025 BCSD RCP 8.5 CMCC-CM (KKZ Rank = 1)
06	MFBASE1808C25BCSDR85M31	2025 BCSD RCP 8.5 MIROC5
07	MFBASE1808C25BCSDR45M09	2025 BCSD RCP 4.5 CMCC-CM
08	MFBASE1808C25BCSDR45P50	2025 BCSD RCP 4.5 Ensemble Median
09	MFBASE1808C50BCSDR45P50	2050 BCSD RCP 4.5 Ensemble Median
10	MFBASE1808C25MACAR85P50	2025 MACA RCP 8.5 Ensemble Median
11	MFBASE1808C25BCSDR85P50	2025 BCSD RCP 8.5 Ensemble Median
12	MFBASE1808C50MACAR85M28	2050 MACA RCP8.5 IPSL-CM5B-LR (KKZ* Rank = 1)
13	MFBASE1808C25MACAR85M06	2025 MACA RCP8.5 CCSM4 (KKZ# Rank = 1)
14	MFBASE1808C50MACAR85M28	2025 BCSD RCP8.5 CCSM4 (KKZ* Rank = 1)

CBP Watershed Model results – Average Annual

2025: Annual Responses

Simulation	△ Rainfall	△ Freshwater	△ Nitrogen
Rainfall Trend	3.11%	2.38%	2.10%
BCSD RCP8.5 Ensemble Median	4.61%	3.34%	4.50%
MACA RCP8.5 Ensemble Median	2.80%	1.73%	1.80%
BCSD RCP8.5 CCSM4 (KKZ #1)	7.43%	9.85%	23.80%
MACA RCP8.5 CCSM4 (KKZ #1)	4.66%	6.08%	13.60%

2025: Nov-Jun Responses

Simulation	△ Rainfall	△ Freshwater	△ Nitrogen
Rainfall Trend	3.11%	2.02%	1.67%
BCSD RCP8.5 Ensemble Median	3.84%	3.30%	4.56%
MACA RCP8.5 Ensemble Median	3.23%	2.06%	1.90%
BCSD RCP8.5 CCSM4 (KKZ #1)	4.77%	5.55%	16.56%
MACA RCP8.5 CCSM4 (KKZ #1)	4.45%	5.72%	14.27%

Rainfall inputs for the scenarios

Monthly variability in rainfall delta change aggregated over the watershed

Summary

- Results of climate change assessments for 2025, 2035, 2045, and 2055 were shown.
- Including land use change slightly compounded the climate change effects.
- 3 new scenarios based on updated metric for KKZ Ranking analyses were processed and analyzed.
- Simulation results showed that watershed model responses are sensitive to how space and time scales are factored in the processing of delta changes in rainfall and temperature inputs.
- Trend-based rainfall projections (estimated from annual rainfall data) did not have any monthly/seasonal component.
- Analysis did not include changes in socio-economic responses, crop yields, growing degree days, atmospheric deposition, and best management practices (BMPs) etc.

?. How rainfall volume delta change is estimated for climate change scenarios beyond Year 2025

- They form a source of discontinuity. Modeling workgroup in September 2018^[1] recommended combining two data sources using weighted averages for the periods between 2025 and 2050.
- Model results were presented in October 2018^[2].

Simulated Changes in Nitrogen Delivery

Trend: projection of extrapolation of long-term trends **Ensemble**: 31-member ensemble of RCP4.5 GCMs **Hybrid**: weighted average of trend and ensemble

?. How rainfall volume delta change is estimated for climate change scenarios beyond Year 2025

• An alternative would be to estimate delta change for the periods beyond 2025 by adding GCM delta for a future year and 2025 to the trend-based delta for 2025.

Hybrid vs. Proposed
(delta change for GCMs wrt 2025)

1995 2025 2055

trend
GCMs

1995 2025 2055

2025 Phosphorus delivery

Differences in **Edge of River** Phosphorus Loads

Differences in Phosphorus Loads **Delivered to Bay**

Rainfall inputs for the scenarios

Monthly variability in rainfall delta change aggregated over the watershed

