Advanced dissolved oxygen criteria: temperature accounting?

Peter Tango with input again from Modeling WG (Gary Shenk, Lew Linker) and others

CAP WG

7-6-2023

Designated Use	Dissolved oxygen (Concentration/Dur		Temporal Application			
Migratory fish spawning and nursery use	7-day mean ≥ 6 mg with 0-0.5ppt salin		February 1 – May 31			
	Instantaneous min	$\geq 5 \text{ mg/L}$				
	Open water fish & designated use crit		June 1 – January 31			
Shallow water Bay grass use	Open water fish & designated use crit		Year-round			
Open water fish and shellfish use	30-day mean	≥ 5.5 mg/L Salinity: (0-0.5ppt)	Year-round	Dissolved Oxygen		
		≥ 5 mg/L Salinity: >0.5ppt		Criteria		
	7-day mean	$\geq 4 \text{ mg/L}$				
	Instantaneous min ≥ 3.2 mg/L			Measured		
Deep-water seasonal fish and	30 day mean > 3m	g/L	June 1 – September 30			
shellfish use	1-day mean >2.3 mg/L					
	Instantaneous min	\geq 1.7 mg/L		Unmeasured		
	Open water Fish a designated use crit		October 1-May 31			
Deep channel seasonal refuge	Instantaneous min > 1 mg/L		June 1 – September 30			
use	Open water F & S	applies	October 1 - May 31			

Present criteria are static for a static world

Foundation of Table USEPA (2003)

However, we have acknowledged and have good data indicating our world and our system is evolving. We are a non-stationary system affected by climate change

Global land and ocean temperature trends

Bay and watershed water temperature trends

Can we/Should we update our criteria to account for rising temperatures?

 Oxygen saturation equivalence

Question: Can we/Should we update our criteria to account for rising temperatures?

 Oxygen saturation equivalence

Nomograph

But wait! There's more!

How does salinity affect the oxygen measurement?

- The solubility of oxygen in water is dependent on salinity, while the partial pressure and the % saturation of oxygen is not affected by changes in salinity. This means that in absolute concentration a seawater sample will contain less oxygen than a freshwater sample at the same temperature although the partial pressure is the same.
- The table below lists values of the concentration of dissolved oxygen at several temperatures in solutions with various chloride concentrations.

Increasing the salt concentration leads to a decrease in oxygen solubility.

Table Solubility of oxygen in water as a function of temperature and salt concentration	(Total	pressure = 760 torr)
---	--------	----------------------

T [°C]	Oxygen solubility [mg/L]							
[Cl ⁻] (g/1000g)	0	4	8	12	16	20		
0	14.5	13.9	13.3	12.6	12.0	11.3		
10	11.3	10.8	10.4	9.9	9.5	9.0		
20	9.1	8.8	8.5	8.1	7.8	7.4		
30	7.5	7.3	7.0	6.7	6.4	6.1		

Considerations

- Since DO saturation is more important than concentration to our fish and shellfish, do we move toward...
- Expressing criteria in DO SAT in the first place?
- Adjust criteria for average bay summer temperature based on the DO SAT difference between 1993-1995 and the current 3-year period.
 - Do we need to further incorporate salinity?