

Prepared by the Patuxent River Issue Study Group Class
Marine, Estuarine, and Environmental Sciences (MEES) Program 2023

Students Introduction

Name	Research Interests
ALLISON	WATER QUALITY AND HYPOXIA MODELING
AMIR	BIOGEOCHEMICAL AND HYDRODYNAMIC MODELING
ANNA	METHANE CYCLING; SEDIMENT BIOGEOCHEMISTRY
FARDIS	HURRICANE MODELING
NANI (VERONICA)	SOCIAL NETWORK ANALYSIS OF PATUXENT RIVER STAKEHOLDERS
SADIA	STABLE ISOTOPIC MEASUREMENT AND CLIMATE CHANGE EFFECTS

Coastal Hypoxia and Eutrophication

BALTIC SEA

GULF OF MEXICO

Chesapeake Bay Dissolved Oxygen Second July Cruise 2022 - MD Mainstem Jul 26-27 / MD Tributaries Jul 6-18

https://www.epa.gov/system/files/images/2022-06/rabalais-turner-2019.png

Why Patuxent Estuary

https://planning.maryland.gov/Pages/OurWork/PaxRiverComm/PatuxentRiverCommInfo.aspx

It has oxygen depletion at multiple scales

 It has had a lot of wastewater reductions, but there is still poor water quality in the lower part of the estuary

Research Question

- What are the major factors that control oxygen depletion in the Patuxent River?
- Is there a relationship between these factors and benthic biomass?

Goal 1: Dissolved Oxygen in the Patuxent (1930-Present)

- Sparse Dissolved Oxygen (DO) Data Pre-1985
 - Present and future assessments will rely heavily
 - Data from 1985 to Present
 - Comparable waterbodies with data rich history

Dissolved Oxygen in the Patuxent (1930-Present)

- Modern Water Quality Standards →
 Contributing factor to short term DO
 improvement
 - Protect aquatic living resources
 - Specific criteria for dissolved oxygen (DO)
 - Water clarity/underwater bay grasses

Figure 17. Summer (June-September) bottom DO data (dots) and mean seasonal long-term pattern generated from non-flow adjusted GAMs. Colored dots represent June-September data corresponding to the monitoring station indicated in the legend; colored lines represent mean summer GAM estimates for the noted monitoring stations.

Goal 2: Quantify long-term changes in hypoxic volume and area (1985-2022) and quantify controls

- (a) Use interpolation and monitoring data to compute volumes, lengths, and areas
 - (i) Explore kriging versus IDW, methods
 - (ii) Compute hypoxia at various thresholds (<1, 2, 3, 5 mg/l)
 - (iii) Compute stratification strength from T/S profiles

(b) Statistical models to explain size of hypoxic regions (nutrient load, flow, temperature, wind)

Past ISG class did not find any correlation between hypoxic volume and total nitrogen loads

From previous Patuxent ISG class

TN Load (kg/d)

SCAVIA, et. al 2021

Goal 3: Derive estimates of hypoxia onset, breakup, and rates of DO depletion

Overarching questions:

- How does the onset of hypoxia vary over time? → temporal variation
- How does the onset of hypoxia vary along the Patuxent River? → spatial variation
- How quickly does DO decrease during the onset of hypoxia?
- What factors are controlling seasonal variability in hypoxia onset?

- Approach

- Compute at each monitoring station for each year
- Validate with high-frequency data where possible (Benedict Bridge, St. Leonard Creek, etc.)

Goal 3: Derive estimates of hypoxia onset, breakup, and

rates of DO depletion

Table 1 Monitoring station characteristics and hypoxia metrics in the modern (1985–2009) Chesapeake Bay Program-MD Department of Natural Resources dataset

Station	Latitude	Longitude	Depth (m)	Surface salinity	Hypoxia onset	% years hypoxic	O ₂ depletion rate (mmol O ₂ m ⁻³ day ⁻¹)
CB3.3C	38.996	-76.359	26	9.13	May 4 (±13)	100	3.19 (±0.78)
CB4.1C	38.826	-76.399	33	10.77	May 8 (±15)	100	3.16 (±0.63)
CB4.2C	38.646	-76.421	28	11.82	May 17 (±16)	100	3.34 (±0.69)
CB4.3C	38.555	-76.428	28	12.15	May 19 (±17)	100	3.31 (±0.63)
CB4.4	38.415	-76.346	32	12.90	May 23 (±18)	100	3.16 (±0.75)
CB5.1	38.319	-76.292	36	13.55	May 24 (±18)	100	3.09 (±0.91)

Fig. 2 Seasonal cycle of bottom water O₂ saturation and concentration a CB5.1 (Fig. 1) in 2004 and illustration of how rate water column O depletion and date of hypoxia onset were derived from the time series dat (see text)

Goal 4: Relate changes in oxygen depletion to metrics of living resources

- Statistical models (GAMs, regression) to relate oxygen depletion metrics (area, volume, duration) to benthic invertebrate biomass and abundance

 Consider non-hypoxia variables that also control benthic biomass (temperature, salinity, productivity)

Goal 4: Relate changes in oxygen depletion to metrics of living resources

From previous Patuxent ISG class (2017)

Cross river comparison from Kemp et al. 2005

