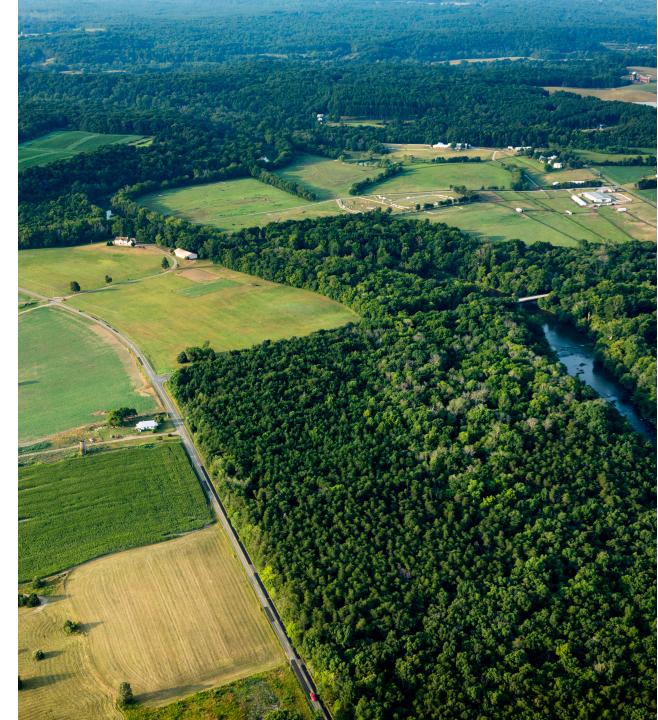
Quarterly Members June 20, 2023

Optimization Update

Kalyanmoy Deb, Pouyan Nejadhashemi, Gregorio Toscano, and Hoda Razavi

MICHIGAN STATE UNIVERSITY



Agenda

Objective of the project

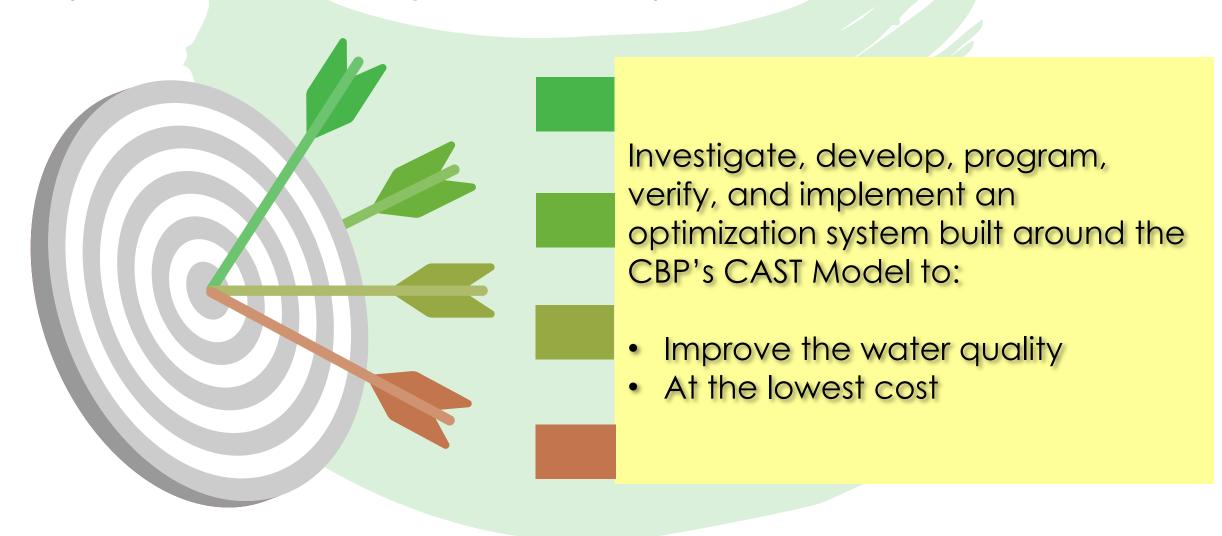
Timeline

4

3 Performed experiments

Conclusions & Next steps

Objective of the MSU-Optimization Project



Timeline of the Project

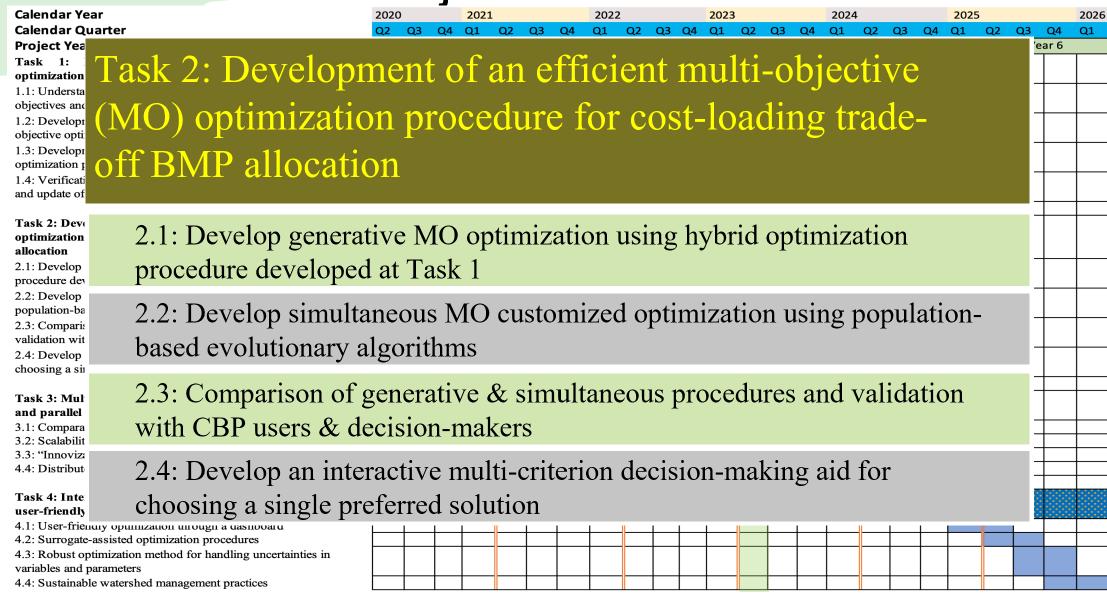
variables and parameters

4.4: Sustainable watershed management practices

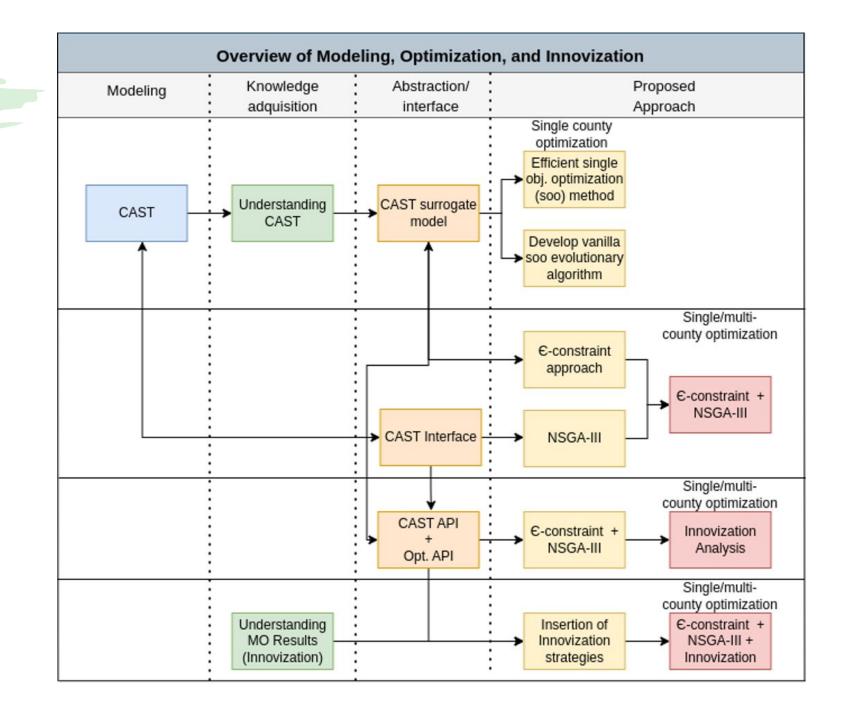
Calendar Year	2020		202	1			2022				2023				2024				2025				2026
Calendar Quarter	Q2	Q3 Q4	4 Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
Project Year		Year 1	L		Yea	ar 2			Yea	ar 3			Yea	ar 4			Ye	ar 5			Yea	r 6	
Task 1: Development of an efficient single-objective																							
optimization procedure for cost-effective BMP allocation																							
1.1: Understanding CAST modules and effect of BMPs on objectives and constraints																							
1.2: Development of a simplified point-based structured single- objective optimization procedure																							
1.3: Development of a hybrid customized single-objective optimization procedure																							
1.4: Verification and validation with CBP users and decision-makers and update of optimization procedure																							
				_																			
Task 2: Development of an efficient multi-objective (MO) optimization procedure for cost-loading trade-off BMP allocation																							
2.1: Develop generative MO optimization using hybrid optimization procedure developed at Task 1																							
2.2: Develop simultaneous MO customized optimization using population-based evolutionary algorithms																							
2.3: Comparison of generative & simultaneous procedures and validation with CBP users & decision-makers																							
2.4: Develop an interactive multi-criterion decision-making aid for choosing a single preferred solution																							
Task 3: Multi-state implementation using machine learning and parallel computing platforms																							
3.1: Comparative study to choose a few best performing methods				_	\perp																		
3.2: Scalability to State and Watershed level Scenarios				_																			
3.3: "Innovization" approach for improving scalability			_	_									_										
4.4: Distributed computing approach for improving scalability			_	-	\vdash								_			<u> </u>							
Task 4: Interactive optimization and decision-making using				+																			
user-friendly dashboard																							
4.1: User-friendly optimization through a dashboard					1 1																		
4.2: Surrogate-assisted optimization procedures																							
4.3: Robust optimization method for handling uncertainties in																							

We are here

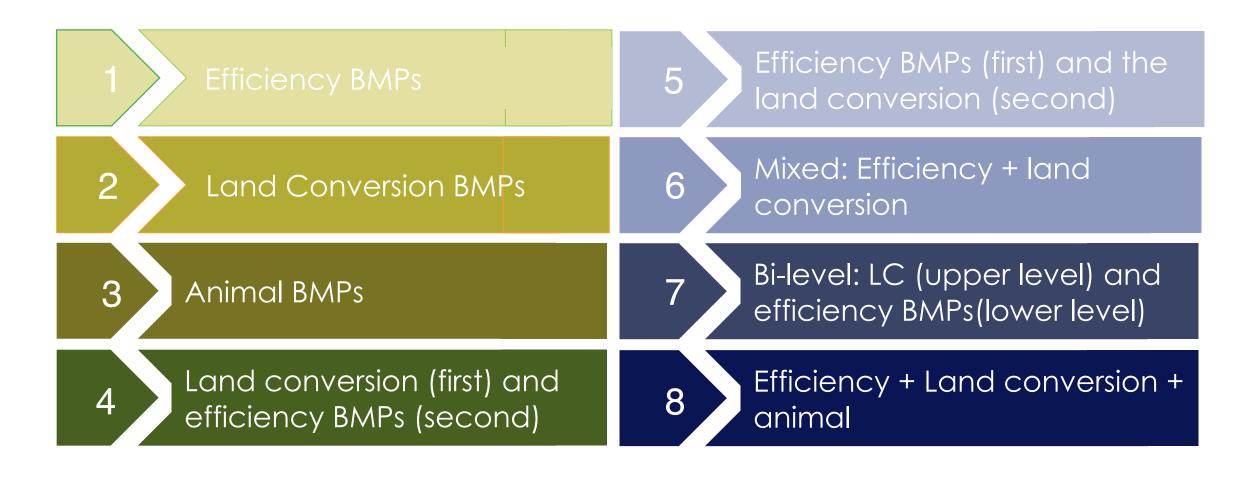
Timeline of the Project



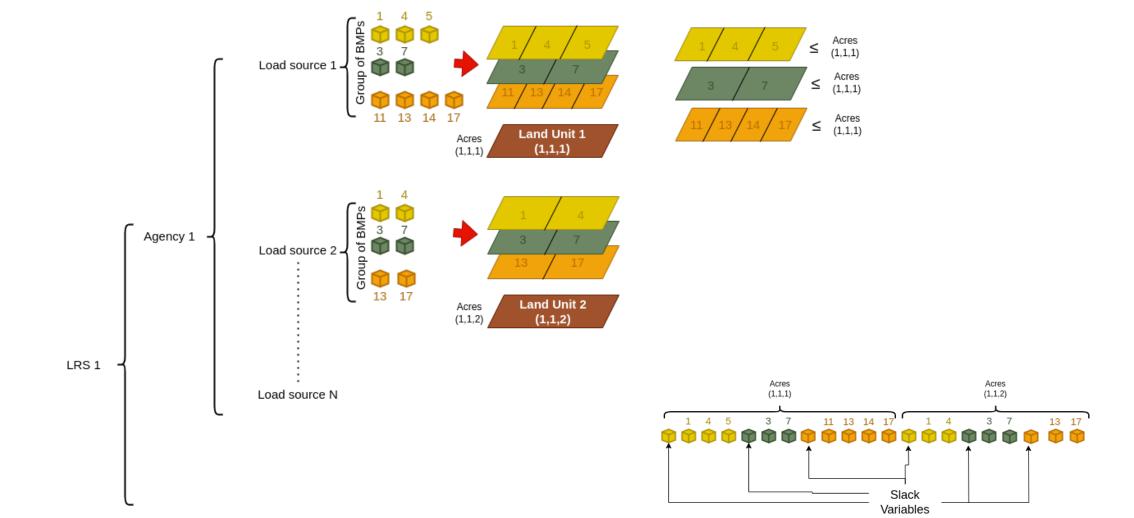
We are here



Performed experiments



Efficiency BMPs



Acres of a particular load source are converted into acres of another load source.

Two options:

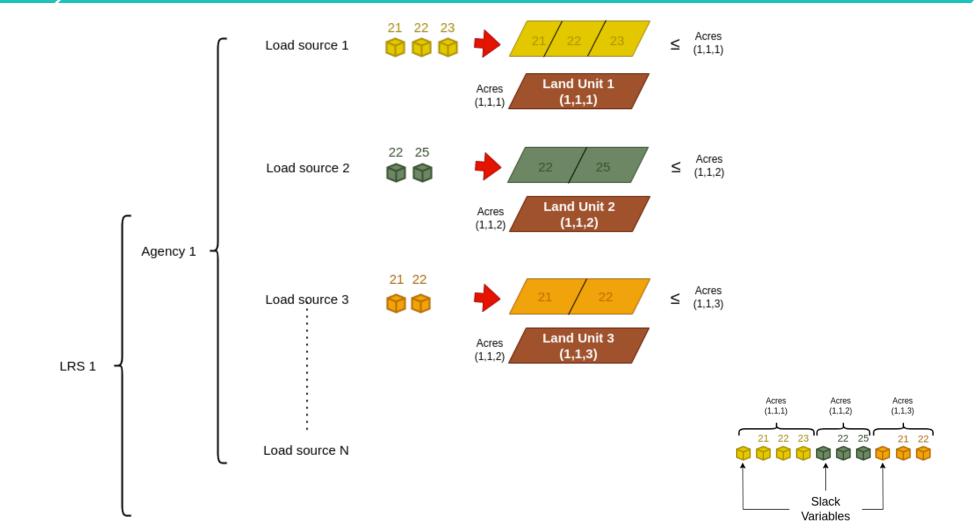
The simplest option, the change only modifies the area for the two load sources involved in the conversion

The change has an explicit side effect, which consists in removing additional loads generated in upland acres.

- Raise in the variable counter
- ~10% of increment in variables
- Introduces a significant level of epistasis*.
- We use CoreCAST to compute the load.

County	Eff. Variables	L.C. Variables
Berkeley	14,090	1,465
Grant	25,228	1,913
Hampshire	12,783	1,392
Hardy	18,607	1,909
Jefferson	12,303	1,374
Mineral	20,260	1,745
Monroe	3,102	352
Morgan	11,880	1,253
Pendleton	33,083	2,869
Preston	1,470	138
Tucker	1,012	50
Total	153,818	15,700

- When the LC BMPs are introduced into the system, the behavior of the system is different. BMPs that previously were very effective for previous scenarios might no longer work.
- The representation of a solution is important in optimization problemsolving because it determines how the problem space is explored and the range of potential solutions considered
- A good representation ensures feasibility, enables efficient search, facilitates evaluation, and may need to be interpretable. It influences the effectiveness and quality of the optimization process.
- They way that L.C. BMPs work, required a customized representation of solutions in our approach.

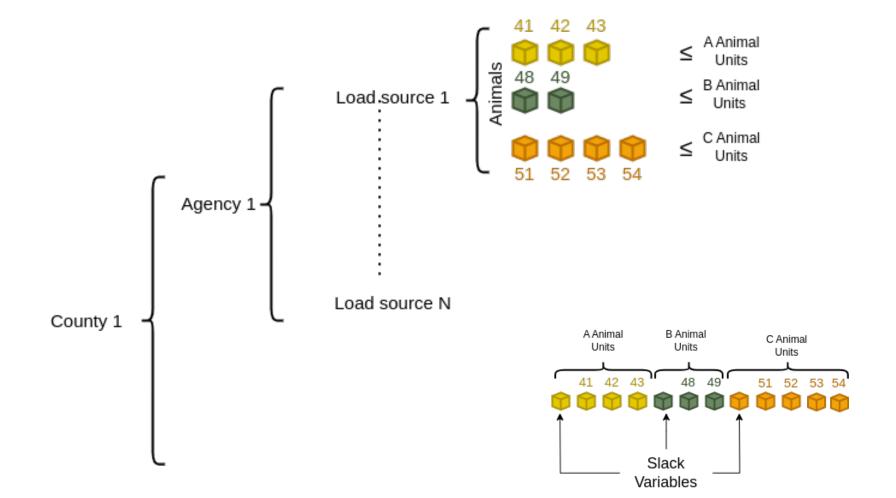


Animal BMPs

- Options that remove load from upland load sources *
 - These BMPs modify nutrient concentrations in animal manure for specific types, groups, and number of animals.
 - These BMPs are only applied to Feeding Space load sources and may have side effects on fertilizer application and atmospheric deposition.
 - The total number of animals is only available at the county level.

^{*}We use CoreCAST to compute the load.

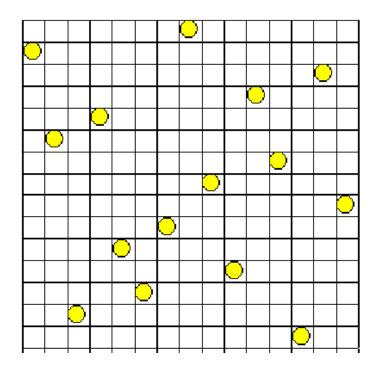
Animal BMPs



Land Conversion (first) and Efficiency (second)

Experiment

- Latin Hypercube Sampling statistical method where the range of each variable is divided into equally probable intervals.
- One value from each interval is chosen at random to construct the sample, ensuring a good spread across the range of each variable.
- Create 100 solutions using LHS. Each solution refers to a vector containing the number of LC BMPs.



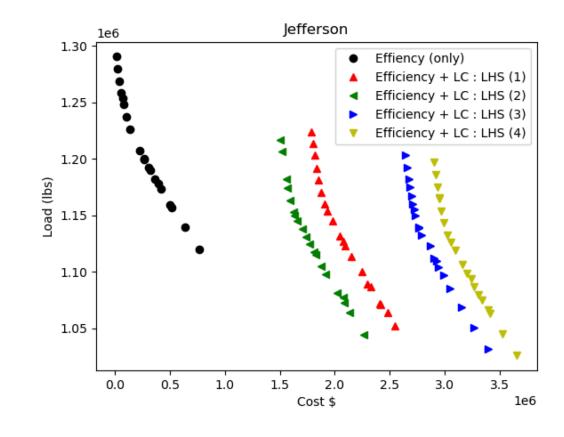
Land Conversion (first) and Efficiency (second)

Experiment

- Create a Latin Hypercube Sampling (LHS) for the given LC BMPs
- Optimize efficiency BMPs on each LHS solution

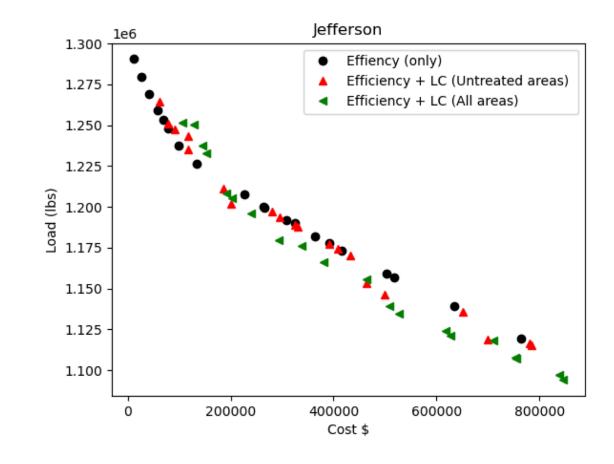
Conclusions

- The High epistasis prevents the approach to obtain good results.
- Large scale dimensionality.
- Optimization is needed.



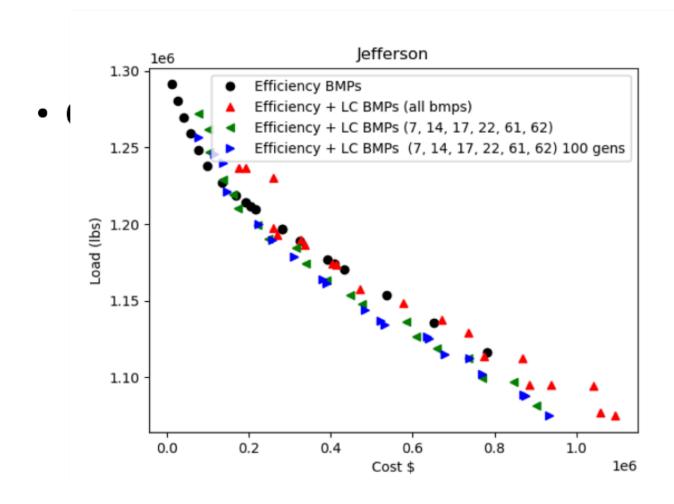
Efficiency (first) and Land Conversion (second)

- We optimize efficiency BMPs in the usual way
- We optimize for land conversion in two different ways.
 - We only look to use LC BMPs on non selected parcels by the optimization of efficiency BMPs. Good results here would indicate that we can separate the problems (LC and efficiency).
 - We apply LC BMPs to any parcel
- Results:
 - Although both approaches produced results better than using efficiency BMPs (only), it is clear that the second approach produced better results. Therefore, we cannot separate the optimization of LC BMPs and efficiency BMPs.

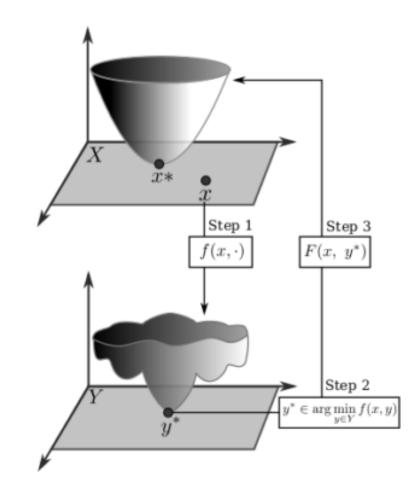


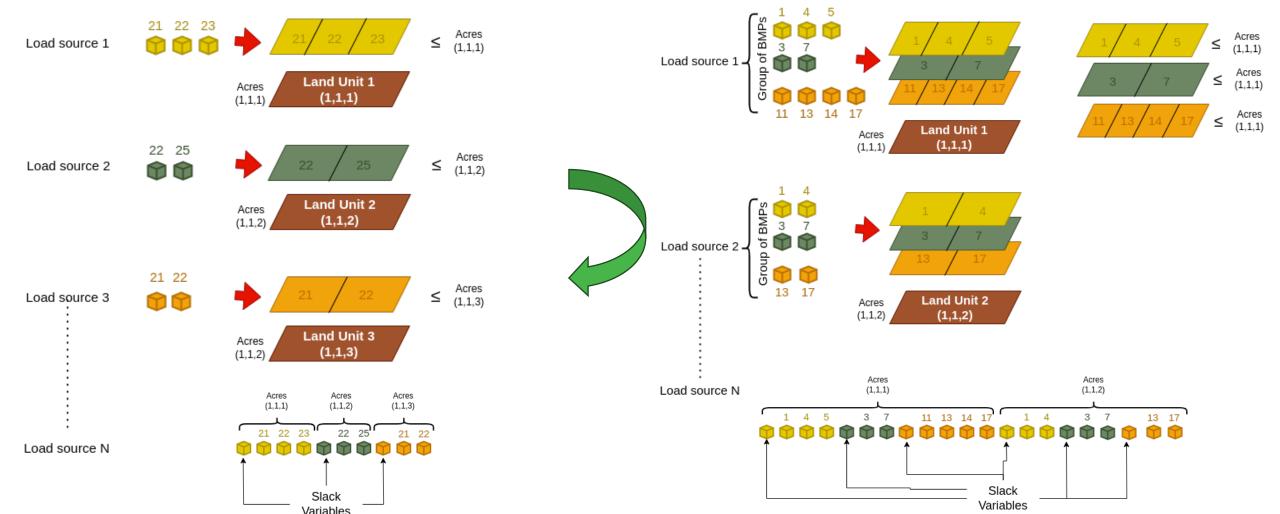
Mixed: Efficiency and Land Conversion

- We first find a solution with Efficiency BMPs, then we optimize simultaneously efficiency and land conversion BMPs.
- We found that trying to optimize simultaneously efficiency and LC BMPs is time consuming.
- We added an additional experiment, where we selected one single LC BMP at a time to optimize with the efficiency ones. We found that some LC BMPs offer a very good response, and that the problem gets more difficult when we add more variables.
- The execution for an extended number of generations produce better results.
- We will need to extend our innovization study to the use of LC BMPs.

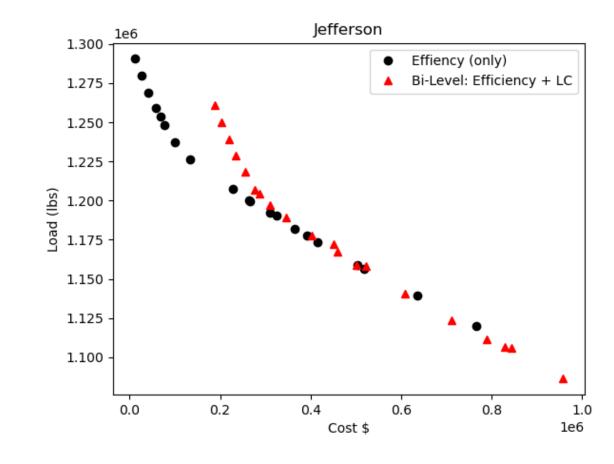


- Bilevel optimization refers to a type of optimization problem where one problem is embedded within another.
- It is an optimization problem that has two levels of optimization a "upper" level and a "lower" level.
- Each level has its own objective function and constraints.
- These types of problems often arise in scenarios where there are nested decision-making processes.

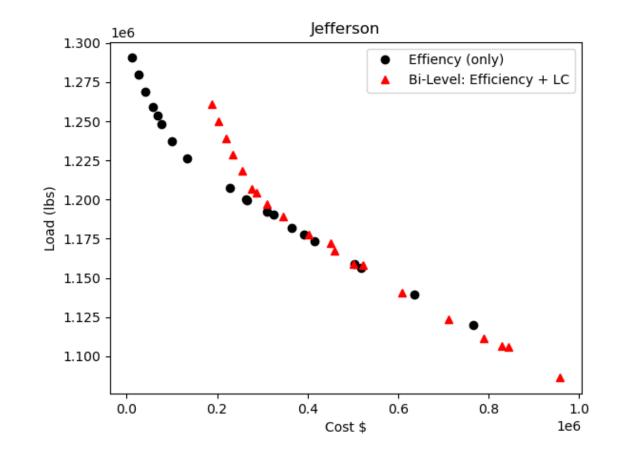




- We are still in the proof of concept.
- LC BMPs are executed in CoreCAST.
- Efficiency BMPs executes the surrogate model.
- The proof of concept consist of:
 - 1. Create an initial population using LHS.
 - 2. Each solution is optimized using our epsilon constraint approach.
 - 3. We merge all solutions and use non-dominance to select a fixed number of solutions.
 - 4. The fitness of a solution depends on their solutions contributed to the global front.
 - 5. We apply genetic operator to such solutions
 - 6. If max number of geneations has reached, go to step 8.
 - 7. Go to step 2.
 - 8. Exit.

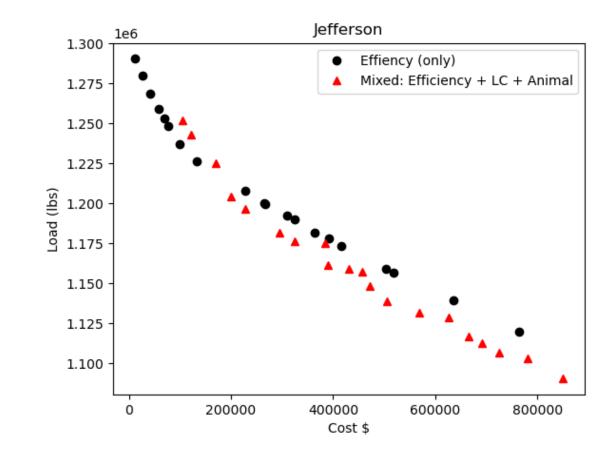


- This is a promising approach. However, it is computationally expensive.
- We use the surrogate model to prevent the excessive call to CoreCAST
- We will present results of this technique in the next quarterly meeting.



Efficiency + Land Conversion + Animal BMPs

- We adopted animal units to gather most animal types.
- We have a low number of added variables per county.
- It is possible to optimize Animal BMPs independently of Efficiency + LC BMPs.



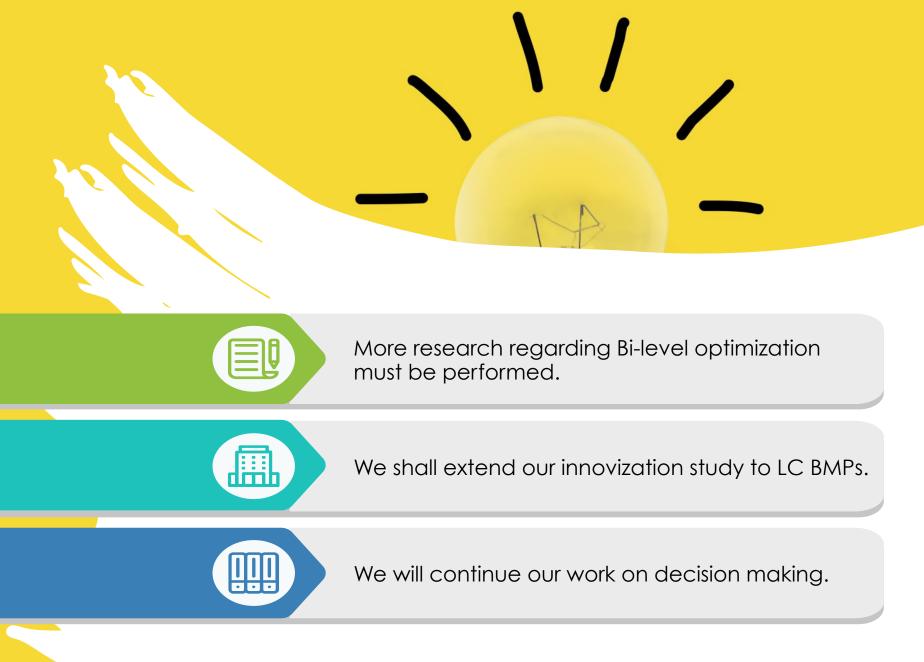
LC BMPs produce a significant reduction in loads, Mixed optimization produced the best results in our studies.

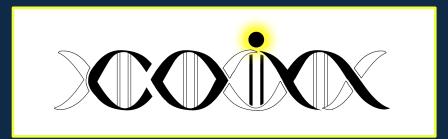
Bi-level optimization shows promising results. Reduction in the number of LC BMPs improve the performance of the approach.

Animal BMPs introduces little variables to the problem.

It is possible to optimize Animal BMPs independently.

Next steps:





Computational Optimization and Innovation

Thank you

