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Abstract—Selecting the appropriate Best Management Prac-
tices (BMPs) is crucial for reducing pollution levels and im-
proving the watershed’s water quality. However, identifying cost-
effective BMP combinations for various locations is challenging,
especially when using computationally expensive evaluation pro-
cedures like the Chesapeake Assessment Scenario Tool (CAST).

This study presents a customized and hybrid evolutionary
multi-objective optimization (EMO) algorithm aimed at enhanc-
ing the water quality in the Chesapeake Bay Watershed for
two conflicting objectives: cost of BMP implementation and the
amount of resulting nitrogen loading to streams. First, we present
a surrogate model-based optimization approach and evaluate its
accuracy and execution time against the CAST evaluation system.
Then, we present a hybrid two-stage EMO procedure, which is
initialized with solutions obtained from a point-based ϵ-constraint
procedure and works with a repair operator to satisfy equality
constraints. The hybrid EMO procedure yields a set of non-
dominated trade-off solutions for problems with as few as 1,012
variables (West Virginia’s Tucker County) to as large as 153,818
variables (the whole state of West Virginia). Alternate trade-off
solutions provide a knowledge of different possible options and
also importantly provide a flexible method of arriving at a single
preferred solution for deployment.

The EMO procedure is then integrated with CAST using
recent RESTful API approaches, and interesting accuracy versus
computational trade-offs are discussed. Finally, a number of
interesting insights of the scale-up optimization study reveal
promising strategies to scale the application to multiple counties
and the watershed level.

Index Terms—Large Scale Optimization, Evolutionary Multi-
objective Optimization, Watershed Optimization, Hybrid Ap-
proach, Best Management Practices, Chesapeake Bay Watershed

I. INTRODUCTION

MANY anthropogenic activities are directly or indirectly
affecting water quality and aquatic habitats. For ex-

ample, agriculture requires the application of fertilizers and
manures that produce crops, but when applied in excess,
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can ultimately discharge into waterbodies, resulting in water
quality degradation in the form of eutrophication and hypoxia
in the Chesapeake Bay, Gulf of Mexico [2], and other coastal
waters [20]. This is a concern as most nutrient pollution in
the Chesapeake and Gulf of Mexico is from nonpoint sources,
and their control and regulation are challenging [11]. Nutrient
export from agricultural lands can be due to many reasons,
including the heterogeneity of the agricultural landscape, the
lack of regulatory enforcement to control fertilizer or manure
application rate and amount, climate variability, and ground-
water and surface water interactions [10], [11].

In order to control agrochemical discharge to waterbod-
ies, both structural and non-structural measures known as
Best Management Practices (BMPs) have been introduced
and standardized by many agencies, including the Natural
Resources Conservation Service (NRCS) [14]. However, their
performance level varies by both physiographical (e.g., soil
type, slope) and climatological (e.g., rainfall intensity, dry
spell) factors. Therefore, BMP performance not only depends
on the design characteristics but is also influenced by the
location of the implementation site. Meanwhile, the level
of complexity can exponentially increase as many types of
BMPs can be implemented on the same parcel of land and in
thousands of locations throughout a watershed [21]. Further-
more, considering all these factors in developing a watershed
restoration plan can be a massive undertaking as numerous
factors must be simultaneously considered [21].

To address these issues, watershed and water quality models
have been widely adopted by water resource managers. How-
ever, despite their effectiveness in handling large and complex
watershed planning through model scenarios, each scenario
can only consider a single large-scale BMP implementation
strategy. Evaluating the most cost-effective strategy would
require a multitude of time-consuming evaluations and, in
many cases, must be manually implemented. On the other
hand, optimization methods can be integrated with watershed
models to address these problems [22].

Prior research on watershed optimization has centered on
agricultural management [13], [25], [31], urban restoration [3],
[32], stormwater management [8], [33], and model calibra-
tion [15], [17]. In most BMP allocation studies, a watershed
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model, a cost evaluation model, and an optimization algorithm
aimed at pollutant reduction and implementation costs have
been utilized [31]. However, current optimization algorithms
are falling short of addressing this type of problem due
to the large size of the optimization search space and the
time-consuming process. Therefore, in this study, we used a
surrogate model to improve the optimization computational
time and narrow the search space to achieve the most cost-
effective BMP allocation scenarios for the CBW.

A. Problem description

Chesapeake Bay Watershed (CBW) is located in the Mid-
Atlantic region of the United States, with a drainage area of
165,760 km2. The three major sources of pollution in the
Bay are nitrogen, phosphorus, and sediment, primarily from
agricultural activities followed by atmospheric nitrogen depo-
sition, stormwater, wastewater, and failing septic tanks [26].
In order to address water quality issues in the Bay and its
tributaries, thousands of variables and constraints need to be
considered for the CBW optimization problem due to the size
of the watershed and the complexity of land use and pollutant
sources.

In our previous studies [16], [27], [29], we developed an
evolutionary multi-objective optimization (EMO) technique to
overcome the challenge of solving a large-scale watershed
problem. The approach combines EMO with an ϵ-constraint
approach and a new repair operator that satisfies the maximum
number of constraints. In addition, a surrogate model of the
objectives and constraints was used to verify the method to
investigate the performance as the problem size increased.
The proposed method was evaluated using the Chesapeake
Assessment Scenario Tool (CAST) and the surrogate model.

Generic optimization techniques, such as random initializa-
tion, penalty-based constraint handling, and standard recom-
bination and mutation operators, could be more efficient for
large-scale practical problems [7]. To improve efficiency, these
techniques must be tailored to specific problem classes. The
constrained balanced optimization problem (CBOP) is a class
of optimization problems that involve many issue instances
over several counties, states, or a cluster of states with similar
land-river segments (LRSs), BMPs for implementation, and
techniques for computing objective and constraint functions
(e.g., cost, nitrogen, phosphorus, and sediment loads). A
generic optimization technique for the CBOP class will be
suitable for most issue situations at a county level. However,
as the problem’s size increases, the optimization algorithm’s
complexity (mostly variables and constraints) will also in-
crease. This research aims to provide an efficient optimization
technique that works well in various variants of the problem
class, regardless of whether the CBOP is formulated for a
single county, several counties, or the state level. The proposed
methodology is evaluated based on its operating principles,
scalability to large areas, and practicality to combine with
computationally cheaper surrogate models.

In the remainder of this paper, we first provide a back-
ground of the current tools and problems in Section II.
Then, Section III presents different customized components to

improve our selected evolutionary algorithm to optimize the
CBW optimization problem. Next, we present the proposed
approach and a study balancing the use of the CAST system
and surrogate models in Section IV. Finally, conclusions are
discussed in Section V.

II. BACKGROUND

A. The Chesapeake Assessment Scenario Tool (CAST)

CAST is widely used as the primary watershed modeling
tool for evaluating the impact of management scenarios on
overall water quality conditions, measured by the reduction of
pollution from point and non-point sources in the Chesapeake
Watershed.

Decision variables are presented as a vector of all possible
combinations of Land River Segments (LRSs), load sources,
jurisdictions, and efficiency BMPs to optimize the model.
Each element in the vector represents the percentage of the
corresponding BMP relative to the total LRS area, the load
source, and the political/agency jurisdiction. However, the
number of decision variables increases with LRSs, particularly
in larger areas. Constraints ensure that BMPs allocated to each
combination of LRS, load source, and jurisdiction sum up to
100% of the available area without overlapping.

This optimization model is presented in a generic formula-
tion, where the number of involved variables and constraints
is contingent on CBW’s focal area, be it county-level, state-
wide, or encompassing the entire watershed, as referenced in
[19], [28]:

Min. f1(x)=
∑
s∈S

∑
h∈Hs

∑
u∈U

∑
b∈Bu

τbxs,h,u,b,

Min. f2(x)=
∑
s∈S

∑
h∈Hs

∑
u∈U

[
αs,h,uϕs,h,u

∏
GB∈GB

(
1−
∑

b∈GB

ηN
s,h,b

xs,h,u,b

αs,h,u

)]
,

s.t.
∑

b∈GB

xs,h,u,b = αs,h,u, ∀s ∈ S, h ∈ Hs, u ∈ Us, GB∈GB ,

xs,h,u,b ≥ 0, ∀s ∈ S, h ∈ Hs, u ∈ Us, b ∈ Bu.
(1)

The number of acres (real-valued variables) used to implement
a specific BMP b on an agency h, load-source u, and land-river-
segment s is denoted by xs,h,u,b. Note that not all combinations
of the four tuples are allowed due to practical reasons, making
another level of difficulty in directly using the above formulation
within an optimization algorithm. EMO methods allow a relatively
easy way to allow restrictive nature of variables. The first objective
function f1(x) represents the overall cost of implementing all BMPs,
while the second objective function f2(x) calculates the nitrogen
load reduction. The parameter τb denotes the cost per unit acre of
implementing BMP b, and ηN

s,h,b represents the efficiency of BMP
b in removing nitrogen when applied to agency h and land-river-
segment s. The parameter α indicates the total available acres, and
G includes all the groups of BMPs G that can be applied to a given
(s, h, u). All parameter values are selected from CBW’s practice.

The primary objective is to determine the cost of implementing all
allocated BMPs, and the secondary objective is to assess the nitrogen
load after implementing the BMPs. Therefore, our optimization
goal is to design BMP allocations that minimize both the cost of
implementation and the nitrogen loading to waterbodies (i.e., edge
of the stream).

This study examines all 11 counties in the West Vir-
ginia Chesapeake Bay Watershed (CBW), including Berkeley,
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TABLE I
BASE NITROGEN, NUMBER OF CONSTRAINTS, AND VARIABLES FOR THE

STUDIED COUNTIES.

County Base N2 (fbase
2 ) #Constraints #Variables

Berkeley 977,896 1,813 14,090
Grant 1,049,450 3,448 25,228
Hampshire 1,012,797 1,700 12,783
Hardy 1,344,295 2,491 18,607
Jefferson 1,018,012 1,606 12,303
Minral 763,864 2,698 20,260
Monroe 48,655 399 3,102
Morgan 271,134 1,665 11,880
Pendleton 1,133,327 4,352 33,083
Preston 4,683 193 1,470
Tucker 1,702 144 1,012

Total 7,625,818 20,509 153,818

Grant, Hampshire, Hardy, Jefferson, Mineral, Monroe, Mor-
gan, Pendleton, Preston, and Tucker. County-specific variables
and constraints are presented in Table I. Even the smallest
county in the study has over 1,000 variables, making it a
large-scale optimization problem for any algorithm, including
evolutionary algorithms. However, when considering the entire
state, as executed in this paper, the scale of the problem be-
comes even larger, involving 153,818 real-parameter variables
to be optimized. In addition, the base nitrogen values in the
table are derived from existing BMP usage in each county
and state, which are used to show the results of our proposed
algorithm.

In summary, this paper develops a multi-objective decision
optimization program that must identify a set of BMPs chosen
from a large number of options covering states and the wa-
tershed, satisfying a large number of constraints, minimizing
the cost of implementation and simultaneously minimizing
nitrogen loading to the environment.

B. Optimizing Multiple Objectives

A large number of variables in an optimization formulation
of the overall problem poses a challenge for any optimization
method. However, in this study, besides having a large number
of variables, the nature of the problem in CBW is multi-
objective since it requires the simultaneous minimization of
two contradictory objectives: (i) lowering the costs of BMP
implementation and (ii) decreasing pollutant loads to the
environment.

In contrast to a single optimal solution, a multi-objective
optimization problem yields a set of trade-off Pareto-optimal
solutions [6], [23]. The Pareto-optimal solutions lie on the
boundary of the feasible objective space. No other feasible
solution outperforms these Pareto-optimal solutions in all
objectives in the search space. The Pareto-optimal solution set
usually contains multiple trade-off solutions among objectives.
It is worth noting that the set also contains individual optimal
solutions for each single-objective constraint problem.

Usually, solving a multi-objective optimization problem
involves scalarizing numerous objectives into a single pa-
rameterized objective function and solving several scalarized
problems by systematically varying the parameters. Typi-
cally, a weighted-sum approach [5] with a weight vector

w as a user-defined parameter set is employed to minimize∑M
k=1 wkfk(x). Nonetheless, there are at least two issues with

this strategy. First, the objectives must be normalized so that
their weighted total gives both objectives an equivalent value.
Second, when set out on a f1-f2 plot, the best solutions may
not present decision-makers with well-distributed spots from
which to choose.

In this work, we opted for the Non-dominated Sorting
Genetic Algorithm III (NSGA-III) [18], a population-based
multi-objective optimization method that identifies multiple
sets of Pareto-optimal solutions in a single run. The selected
method is based on evolutionary optimization and employs a
non-dominated sorting strategy and a reference vector-based
diversity-preserving operator to prioritize diverse objective
solutions within an evolving population. It is essential to
highlight that our current framework can be readily adapted
to minimize additional pollutants, such as phosphorus or
sediments. Given the potential complexity of managing mul-
tiple objectives, choosing an approach like NSGA-III, which
has shown effectiveness in handling problems with three or
more objectives, becomes important. Coupled with this is the
algorithm’s reliance on Pareto-dominance, which seamlessly
handles objectives of different magnitudes without scalariza-
tion. These two features ensure that solutions are evaluated
and prioritized based on their dominance in the multi-objective
space rather than on the inherent scale of any single objective.

III. DESIGN OF CUSTOMIZED EMO PROCEDURE

This paper employs an evolutionary algorithm (EA), an
adaptable and modifiable technique successfully used to
solve many other real-world problems. Using problem-specific
knowledge, it is possible to (i) tailor an EA’s effective repre-
sentation scheme, (ii) develop a simple and computationally
efficient assessment technique, (iii) work with a biased initial
population, (iv) customize its operators, and (v) improve the
termination criterion.

We apply these characteristics to create the algorithm’s
components. For this reason, we devise three improvements to
customize our proposed method’s components: (i) We adopt
a surrogate model to reduce the computational burden for
evaluating a solution, ii) we use a scalarization approach
with the surrogate model to find a biased initial population
or good solutions. By leveraging the ϵ-constraint approach,
we can efficiently harness problem-specific data, such as
gradients/Jacobians and the Hessian matrix, to swiftly pinpoint
efficient solutions within the realm of constrained optimiza-
tion, and iii) we devise a repair method for linear constraints to
deal with predominantly possible solutions, rather than dealing
with complex and generic methods of handling severely con-
strained space. Similar to other real-world applications [30],
our method unfolds in two stages. In the first stage, the ϵ-
constraint method swiftly identifies an initial approximation of
a well-distributed set of near Pareto solutions, leveraging a sur-
rogate model to optimize computational efficiency. Following
this, in Stage 2, the NSGA-III strategy finds well-distributed
and well-converged trade-off solutions by integrating eval-
uations from both the surrogate model and CAST. Since
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CAST evaluation tool is not differentiable, the use of a direct
search method, such as NSGA-III, is justified. Moreover, given
that we are working on a large-scale optimization problem,
we will measure how well our strategy performs when the
problem is scaled. It is also worth highlighting that, apart
from the ϵ-constraint approach, alternative methods such as the
Achievement Scalarization Function, among other scalarizing
functions, can be integrated for problem-solving. Furthermore,
given our venture into large-scale optimization, we aim to
evaluate the robustness of our strategy, especially in scenarios
with scaled complexities.

The experimental conditions are described in detail below.
• Large-run front: By injecting (already described) solu-

tions into the NSGA-III, we construct a non-dominated
reference set. The NSGA-III algorithm is run for 1,000
generations with a population size of 1,000 and 600
reference points. We adopted standard values for the re-
maining parameters and carried out the identical approach
for each county and the computed merged counties.

• Performance measure: We employ the Hypervolume
(HV) ratio, which divides the HV of each execution by
the HV of the PF. We determined each Pareto front’s
maximum and lowest values for a fair comparison across
all problems. We utilized these numbers to normalize the
output of the NSGA-III. Therefore, we adopt (1.1, 1.1)
as a reference point.

A. Surrogate Model for Efficient BMPs in the CBW

To analyze a vast number of data points and variables, large-
scale optimization problems require significant computational
power, making them challenging to solve. Furthermore, the
quantity of data and variables to be processed can make it
more difficult to identify a suboptimal solution. In addition, it
can be arduous to discover patterns and relationships between
variables due to the volume of the data. Finally, the problem’s
intricacy can make it challenging to build efficient algorithms
to address it.

CAST’s scenario execution is a time-consuming process.
Consequently, building components and the execution of op-
timization algorithms employing CAST to evaluate scenarios
may demand significant time.

Utilizing surrogate models is a systematic method for ad-
dressing computationally expensive problems. In this instance,
the execution of CAST adds layers of complexity due to the
lengthy evaluation time required by CAST.

Among the various forms of BMP, efficiency BMPs are
the ones that can be modeled most effectively using surrogate
models. Therefore, in this study, we will focus on these BMPs.

For our surrogate model, we adopted Equation 1. For one to
have confidence in the results evaluated by a surrogate model,
it is imperative that the model be precise. Consequently, we
must maintain the Pareto dominance relation when dealing
with multi-objective optimizations.

With this experiment, we want to determine whether the
surrogate model described in Equation 1 is comparable to the
CAST model. Below, we compare the execution time of the
proxy model to that of CAST. In addition, we also assess the

accuracy of the surrogate model and determine the effect of
its use regarding Pareto dominance.

To validate the execution time, we randomly generated
10,000 scenarios for each county and counted the milliseconds
that the surrogate model and CAST require to evaluate them.
Then, the data in Table II presents the evaluation time.

The surrogate model requires an average of 18 millisec-
onds, whereas CAST requires an average of 1.5 minutes (the
surrogate model requires 0.01% of the time CAST requires
to evaluate the same scenario). The CAST assessment time is
affected by a number of variables, most significantly network
speed and job saturation. Currently, CAST can simultaneously
run five scenarios. However, we would like to highlight that
currently, CAST is running in an environment where the
computational power can be increased by software (Hardware
as a service, or HaaS for short); thus, it is possible to increase
the computational power such that the evaluation of all our
scenarios could be computed concurrently if more hardware
is deployed. Despite this, the distinction is so substantial that,
from a computational standpoint, utilizing the surrogate model
will always be more advantageous than using CAST.

TABLE II
TIME COMPARISON IN MILLISECONDS OF THE SURROGATE MODEL AND

CAST.

Statistic Surrogate model (ms) CAST (ms)

Best 1 10,881
Worst 59 175,857
Avg 18.44 93,022.81
STD 14.34 42,173.00

As the BMP implementation cost (the first objective of
our CBOP) is computationally straightforward to determine,
no surrogate model is necessary. Therefore, our surrogate
model focuses mainly on calculating the nitrogen load (second
objective).

To verify the accuracy of the surrogate model, we simulate
other 10,000 scenarios for each of the eleven study counties.
Then, we execute each scenario on both the surrogate model
and the CAST system. Finally, we compute the percentage
absolute error using Equation 2.

E = 100.0× |load− load′|
load

(2)

where load refers to the load value obtained by evaluating the
function using the CAST system. load′ refers to the evaluation
of the solution using the surrogate model. In this case, the
second objective of our formulation f2.

Table III shows the results of the computed error. The table’s
rows show basic statistics for the computed error, while the
columns link to each studied county. The results indicate that
our adopted surrogate model performs similarly to the CAST
system. To ease the analysis of results, we also show a boxplot
comparison in Figure 1. This figure shows us graphically
that the surrogate model has very stable performance, always
presenting less than 2% of error regarding the CAST system.

Although the results indicate that our surrogate model is
accurate regarding the CAST system when working with
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TABLE III
SURROGATE MODEL EVALUATION ERROR (IN PERCENTAGE) FROM THE CAST SYSTEM EVALUATION

Berkeley Grant Hampshire Hardy Jefferson Mineral Monroe Morgan Pendleton Preston Tucker

Best 0.047 0.068 0.111 0.113 0.036 0.082 0.126 0.081 0.087 0.013 0.045
Worst 0.844 1.230 1.629 1.557 0.724 1.631 1.708 1.661 1.269 0.354 1.101
AVG 0.497 0.703 0.863 0.863 0.381 0.893 0.957 0.949 0.700 0.178 0.611
STD 0.239 0.350 0.422 0.439 0.205 0.460 0.433 0.470 0.355 0.097 0.302

Fig. 1. Surrogate model percentage error regarding the CAST system.

multi-objective problems, we want the surrogate model to
preserve the Pareto dominance relation [1]. That is when we
compare two solutions on the surrogate-model space. Here, we
expect to have the same Pareto dominance relation as if they
were evaluated using the real CAST system. For this task, we
perform a Pareto-dominance comparison of pairs of solutions
using the surrogate model and the CAST system.

We generated 10,000 random scenarios for each of the 11
counties of this study. For each generated scenario (solution),
we followed the following steps:

• Select a different scenario (solution) at random.
• Evaluate both solutions in the surrogate model and com-

pare their objectives using Pareto dominance.
• Evaluate both solutions in the CAST system and compare

their objectives using Pareto dominance.
• In the event of a discrepancy in the Pareto dominance

relation, we increase a counter that keeps track of these
disagreements.

• Finally, we compute the disagreement ratio:
counter/10,000. We favor low values for this ratio
because high values can harm our assurance of the
surrogate model’s conformity with the Pareto dominance
compliance in CAST.

Figure 2 presents the ratio of Pareto dominance disagree-
ments regarding the 10,000 performed comparisons. The figure
shows that the ratio is small in all cases and even zero for one
county (Tucker). These findings imply that the surrogate model
can serve as a substitute for the CAST system in the design
of our approach’s components. However, to make the final
solutions acceptable to the real users, their evaluation using
the CAST system either for the final solutions or partially

during optimization is warranted.

Fig. 2. Bar plot showing the proportion of Pareto dominance disagreements
regarding the 10,000 performed comparisons.

B. Biased Initialization

We use a surrogate model to expedite the search process.
The surrogate model adoption lets us propose a hybrid eval-
uation strategy. The initial population of the multi-objective
evolutionary algorithm is seeded with a point-based interior-
point optimization (IPOPT) method [4]. As IPOPT is a single
objective optimization method, we reformulate the problem
as a constrained optimization problem, as follows: minimize
f1(x), subject to f2(x) ≤ ϵkf

base
2 , where fbase

2 is the nitrogen
loading associated with current practice, and X denotes the
feasible variable set associated with any other constraints of
the original formulation. The objective function is restated as a
constraint using ϵ, which transforms the initial single-objective
problem into a single-point multi-objective technique that must
be executed k times to obtain k representative Pareto solutions.
ϵk is used to find a respective solution x(k), which is added
to the initial population. We use the IPOPT approach to build
an epsilon-constraint method [6], [23], and we have used 11
values of ϵk from 1.0 to 0.70 in decreasing steps of 0.03.
However, independent executions to reach a single point make
this strategy inefficient and time-consuming for a large k. That
explains the small k value selected for this biased initialization
method.

The next experiment tries to determine whether incorpo-
rating knowledge into the NSGA-III can enhance its perfor-
mance. In order to achieve this, we select the sets of points
created by our epsilon-constraint method and inject them into
the NSGA-III.
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Figure 3 illustrates the performance of injecting various
points in Berkeley, West Virginia. The points for this county

Fig. 3. Plot showing the effect of injected points into NSGA-III procedure
for the Berkeley county.

and the other counties are determined as follows:
• 0 injected points: No point is injected into NSGA-III.
• 1 injected point: Point 1 (best for cost objective).
• 2 injected points: Points 1 and 11 (best for cost and

nitrogen objectives).
• 3 injected points: Points 1, 6 (a near 50%-50% compro-

mise point) and 11.
• 4 injected points: Points 1, 4, 8, and 11.
• 5 injected points: Points 1, 3, 6, 9, and 11.
• 6 injected points: Points 1 3, 5, 7, 9, and 11.
• 11 injected points: All 11 points.
We modified the termination criterion of NSGA-III to

evaluate its performance with various injected point sets. To
achieve this, we normalize each Pareto front and compute its
hypervolume using (1.1, 1.1) as a reference point. In every
generation, we normalize the current population using the
lower and upper bound of the Pareto front and remove solu-
tions that exceed the HV’s reference point in any dimension.
Finally, we have computed the HV of the filtered population.
The algorithm terminates when either the maximum number
of generations, i.e., 1,000, is reached, or a trade-off solution
set with 90% of the large-front run’s HV is obtained.

Our findings underline the necessity of augmenting the ini-
tial population with external solutions to achieve competitive
results using NSGA-III. The results indicate that the NSGA-
III requires the injection of solutions in its initial population
to produce competitive results. Notably, the algorithm could
consistently yield competitive solutions across all counties un-
til five solutions were injected into the initial population. The
comprehensive results of this strategy, achieved through 31
runs with varying initial populations, are detailed in Table IV.

Figure 4 graphically displays the generation where NSGA-
III stopped while optimizing the Berkeley county. This plot
highlights the importance of injecting solutions into NSGA-
III. On the one hand, when zero or one solution was injected,
NSGA-III failed to achieve 90% of the PF’s HV. On the other
hand, providing 11 solutions almost automatically met the 90%
goal. Upon analyzing Figure 4, it can be inferred that the
benefits of point injection in NSGA-III become evident when

two or more points are injected. Figure 5, thereby highlighting
that NSGA-III can yield satisfactory results when more than
one solution is utilized in the initial population.

Although the data may give us a false sense of simplicity
for this problem, as NSGA-III only needs two generations
in many cases to achieve 90% HV when 11 points are
injected, exploring the extent of improvement that NSGA-
III can achieve with additional iterations will be interesting.
However, it is important to note that these results are only
possible to obtain with injecting solutions.

Table V shows the results of running the NSGA-III for 100
generations with 2, 5, and 11-point injections (see boxes 2 (R),
5 (R), and 11 (R)). NSGA-III continues to improve solutions
as more iterations are performed.

Fig. 4. Boxplots display the generation at which NSGA-III achieved 90% of
the hypervolume of the large run. The results show that injecting more points
leads to faster attainment of the desired hypervolume (Berkeley county).

C. Repair Operator

Equation 1 shows that each LRS is subject to an equality
constraint: the sum of all BMP proportions must be equal
αs,h,u. Suppose we select all BMPs randomly in the interval
[0, αs,h,u], where the value represents the implementation
ratio. It would be improbable that the sum across all BMPs

Fig. 5. The non-dominated points of NSGA-II were obtained using various
numbers of injected IPOPT points in the initial population. The performance of
NSGA-III improves as the number of injected points increases. The ’PF’ line
represents the Pareto front obtained from the large-run NSGA-III (Berkeley
county).
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TABLE IV
NSGA-III’S HYPERVOLUME ON THE EXIT GENERATION FOR EVERY COUNTY IN WEST VIRGINIA AFTER INJECTING A DIFFERENT NUMBER OF POINTS.

Counties 0 points 1 point 2 points 3 points 4 points 5 points 6 points 11 points
AVG ±SD AVG ±SD AVG ±SD AVG ±SD AVG ±SD AVG ±SD AVG ±SD AVG ±SD

Berkeley 0.0 ±0.0 0.3842 ±0.080 0.9013 ±0.000 0.9045 ±0.002 0.9067 ±0.005 0.9082 ±0.006 0.9078 ±0.005 0.9355 ±0.005
Grant 0.0 ±0.0 0.5118 ±0.050 0.9019 ±0.001 0.9053 ±0.004 0.9073 ±0.005 0.9103 ±0.006 0.9101 ±0.005 0.9364 ±0.002
Hampshire 0.0 ±0.0 0.5259 ±0.066 0.5520 ±0.095 0.8896 ±0.018 0.9037 ±0.003 0.9039 ±0.003 0.9037 ±0.003 0.9345 ±0.008
Hardy 0.0 ±0.0 0.4532 ±0.095 0.9011 ±0.000 0.9041 ±0.002 0.9066 ±0.004 0.9105 ±0.007 0.9098 ±0.007 0.9346 ±0.005
Jefferson. 0.0 ±0.0 0.5750 ±0.120 0.8753 ±0.048 0.9015 ±0.001 0.9046 ±0.003 0.9069 ±0.005 0.9072 ±0.008 0.9259 ±0.004
Mineral 0.0 ±0.0 0.4345 ±0.083 0.5577 ±0.150 0.8712 ±0.035 0.9015 ±0.007 0.9044 ±0.003 0.9042 ±0.003 0.9092 ±0.009
Monroe 0.0 ±0.0 0.7350 ±0.040 0.7491 ±0.050 0.9018 ±0.002 0.9029 ±0.002 0.9030 ±0.004 0.9034 ±0.003 0.9138 ±0.004
Morgan 0.0 ±0.0 0.4219 ±0.069 0.5446 ±0.210 0.8426 ±0.048 0.8719 ±0.031 0.9049 ±0.004 0.9073 ±0.006 0.9164 ±0.004
Pendleton 0.0 ±0.0 0.4830 ±0.029 0.9011 ±0.000 0.9056 ±0.003 0.9072 ±0.005 0.9097 ±0.006 0.9112 ±0.008 0.9459 ±0.004
Preston 0.0 ±0.0 0.7889 ±0.035 0.8773 ±0.034 0.9021 ±0.002 0.9025 ±0.001 0.9055 ±0.004 0.9059 ±0.003 0.9324 ±0.005
Tucker 0.0 ±0.0 0.8144 ±0.039 0.8355 ±0.043 0.8994 ±0.005 0.9054 ±0.007 0.9012 ±0.001 0.9047 ±0.004 0.9084 ±0.006

TABLE V
COMPARISON OF RESULTS OF THE ORIGINAL CONSTRAINED FORMULATION WITHOUT ANY REPAIRS, DENOTED AS NR, AND THE APPROACH USING A

VIOLATION REPAIR TECHNIQUE REFERRED TO AS R.

Counties 2 (NR) 2 (R) 5 (NR) 5 (R) 11 (NR) 11 (R)
AVG ±SD AVG ±SD AVG ±SD AVG ±SD AVG ±SD AVG ±SD

Berkeley 0.5377 ±0.110 0.9299 ±0.007 0.5421 ±0.082 0.9815 ±0.000 0.5003 ±0.050 0.9882 ±0.000
Grant 0.4767 ±0.110 0.9412 ±0.005 0.4952 ±0.094 0.9843 ±0.000 0.4143 ±0.061 0.9888 ±0.000
Hampshire 0.5967 ±0.130 0.3997 ±0.150 0.5786 ±0.110 0.9500 ±0.018 0.5510 ±0.066 0.9527 ±0.040
Hardy 0.5183 ±0.120 0.9292 ±0.007 0.6266 ±0.064 0.9825 ±0.001 0.6435 ±0.053 0.9882 ±0.000
Jefferson 0.7088 ±0.120 0.6246 ±0.140 0.7836 ±0.075 0.9455 ±0.026 0.7374 ±0.082 0.9540 ±0.042
Mineral 0.4988 ±0.099 0.3877 ±0.190 0.5427 ±0.082 0.9492 ±0.021 0.5347 ±0.061 0.9603 ±0.022
Monroe 0.8445 ±0.058 0.5690 ±0.072 0.8408 ±0.064 0.9327 ±0.031 0.8486 ±0.049 0.9728 ±0.012
Morgan 0.5865 ±0.140 0.4059 ±0.240 0.6566 ±0.098 0.9435 ±0.034 0.6156 ±0.100 0.9635 ±0.024
Pendleton 0.4451 ±0.140 0.9370 ±0.004 0.4472 ±0.090 0.9850 ±0.001 0.4003 ±0.088 0.9898 ±0.000
Preston 0.8599 ±0.025 0.7490 ±0.081 0.9442 ±0.009 0.9584 ±0.012 0.9498 ±0.012 0.9776 ±0.006
Tucker 0.9011 ±0.037 0.5806 ±0.150 0.9044 ±0.032 0.9254 ±0.039 0.9278 ±0.024 0.9743 ±0.008

is equal to or even close to αs,h,u. For every equality
constraint, however, every variable xs,h,u,b is replaced with
αs,h,u

(
xs,h,u,b/

∑Bu

b=1 xs,h,u,b

)
. Modifying each BMP ele-

ment automatically satisfies the respective equality criterion,
allowing the AG framework to focus its efforts on the feasible
search space.

This study employs a fixed maximum number of genera-
tions and hypervolume-based termination criteria to compare
various techniques, as outlined in the following section.

Similar to our prior experiment, we utilize several injection
points, and the same selection method described previously.
We only consider three alternatives: 11 points, 5 points,
and 1 point. However, in this experiment, we evaluate the
effectiveness of our mending strategy. To this end, we compute
the NSGA-III using the original formulation, indicated as no-
repair (NR), and our efficient yet simple repair approach,
represented as R in our graphics.

Table V compares the HV metric of the original limited
formulation with the proposed repair operator. The constraints
add extra strain to the optimization process. The results are
significantly improved by removing these constraints and
allowing NSGA-III to operate within a feasible search space.

Figure 6 displays the non-dominated sets of Berkeley county
obtained with and without the repair operator [7]. The repair
operator enhances the performance of the NSGA-III. Fur-
thermore, boxplots in Figure 7 show that the repair operator
outperforms the same NSGA-II without it. In this instance,
the repair operator assists the NSGA-III in reaching the non-
dominated set.

Fig. 6. Comparing the approaches of not repairing (NR) versus utilizing the
repair operator (R). The data shows that the repair operator plays a crucial
role in achieving a more varied set of points (Berkeley county).

D. Scale-up Study

Our focus now shifts to testing the efficacy of the cus-
tomized NSGA-III algorithm when applied to optimization
problems ranging from a single county to the entire state. In
light of this, we have made adjustments to the termination
criteria of NSGA-III. The algorithm will now stop either (i)
when the maximum generation count of 1,000 is reached or
(ii) when a trade-off solution set with 97% HV of the large-
front-run is achieved.

Figure 8 shows a general scheme of our scale-up study.
We begin by optimizing each county independently. Next,
we conduct the scale-up study by increasing the size of the
problem. Then, we group at most three counties and optimize
the formed group. We kept grouping counties until we formed
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Fig. 7. Boxplots compare the original constrained method (NR) and the
violation repair operator (R). Results show that using NSGA-III with the
repair operator significantly outperforms the method without repairs (Berkeley
county).

Fig. 8. Clustering scheme for the scale-up study.

a single scenario containing all counties together. In total,
we explored four scaled groups. The “individual” group is
comprised of each county; the “small-size” groups (G1 to
G4) comprised of groups of three counties; the “medium-size”
groups (G1-2 and G3-4) are comprised of groups of five or
six counties, and the “big-size” group (G1-4) is comprised of
all 11 counties with 153,818 variables and 20,509 constraints.

Figure 9 shows that all groups are able to achieve the target
HV pf 97% of the HV of their individual group, except for a
few outliers.

Meanwhile, Figure 10 illustrates the number of generations
required to reach this objective. Notably, the processing effort
does not rise monotonically from left to right along the x-axis
as the number of variables increases from 1,012 to 153,818.

The findings indicate a noticeable shift in the optimization
problem. Initially, the task becomes more difficult as the
targeting areas become scarce. However, as more counties
are included, a turning point is reached where there are
adequate target areas for applying BMPs, resulting in a more
manageable problem to solve.

The scale-up study showed that when we combine counties
in general, the approach requires fewer generations to achieve
the exit criterion (e.g., G1, G3, and G4). However, when we
combine Hardy, Jefferson, and Mineral into the G2 group, we
see a significant increase in the number of generations. One
possible explanation is that Hardy and Jefferson counties are

Fig. 9. Obtained hypervolume for different size groups of the scale-up study.

mostly agricultural-dominated. In general, significantly more
BMPs can be selected in agricultural areas compared to urban
areas. Then when multiple agriculturally-dominated counties
are added, the search space is significantly increased, resulting
in a higher number of generations to meet the exit criterion.

The demographic factors in Hampshire present challenges
in optimizing nitrogen level reduction in an efficient man-
ner. However, combining it with other counties reduces the
difficulty and hastens the resolution of the combined issue.
Interestingly, this tendency is also observed in other groups.

Fig. 10. Termination generation of the NSGA-III in the scale-up study. The
algorithm stops at either: (i) 1,000 generations, or (ii) NSGA-III scale-up
study termination generation. Stops at: (i) 1,000 generations, or (ii) achieving
a 97% HV of that observed in the large-front-run.

Nonetheless, the ability of our proposed NSGA-III method
to solve a 153,818 variable problem in an average of 21
generations is outstanding, and it makes our method promising
to solve the watershed level problem.

IV. PROPOSED HYBRID NSGA-III-CAST APPROACH

The experiments presented in Section III gave us insightful
information regarding the EMO components that we have
developed. The main findings are: i) The adopted surrogate
model provides a computationally fast evaluation procedure
that captures most of the CAST interactions (as it presents
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a low accuracy error) and preserves the Pareto dominance
relation between pairs of solutions. ii) The interior-point-
based approach (IPOPT) that our ϵ-constraint uses is highly
effective in finding solutions in promissory zones. From our
experiments, it was clear that the injection of more solutions
produces faster convergence of our NSGA-III procedure. How-
ever, such an improvement reduces as the number of points
increases (there was little difference between five and 11). iii)
The repair approach allows the NSGA-III to focus on finding
efficient solutions rather than dealing with constraints. iv) The
scale-up study provides valuable information as it is clear that
grouping counties together for optimization helps find efficient
solutions faster than optimizing them independently.

The above insights let us build up a better evolutionary
multi-objective optimization approach. Therefore, we will use
the repair approach and the ϵ-constraint method to feed the
NSGA-III. Furthermore, as the difference between five and
11 points is negligible, we will keep the five points injection.
Finally, after careful assessment, we realize we can still use
the surrogate approach and the CAST system. Therefore,
we propose a hybrid evaluation, where the surrogate will
produce a set of non-dominated solutions and then use the
CAST system to fine-tune the values for the objectives. We
utilize CAST due to its trustworthy output and the fact that
it is based on a physically-based model instead of surrogate
models’ approximations. Therefore, an additional experiment
having hybrid evaluation (surrogate model and CAST) will be
performed below.

Figure 11 shows a coarse-grained flowchart of our final
algorithm. We first compute n solutions with our ϵ-constraint
approach, which uses the surrogate model to evaluate. Then,
these solutions are injected into the initial population of the
NSGA-III. The NSGA-III uses the surrogate model to evaluate
solutions until we reach a certain number of generations. Once
the algorithm reaches a number of generations, it selects CAST
to evaluate the remaining evaluations. Finally, the algorithm
stores the final results and ends.

Fig. 11. Proposed customized evolutionary multi-objective approach.

A. Efficient combination of surrogate and CAST models

We selected two pairs of West Virginia counties for this
experimentation: Berkeley-Mineral, Hardy-Jefferson. The first
two counties are urban, while the last two are agricultural.

As the evaluation in CAST is computationally expensive, we
reduced the population size to 20, and we selected different
configurations where the proposed approach will use the
surrogate model and CAST. This is possible since we have
observed in Section III-A that the surrogate evaluation of
solutions produces a small error compared to their evaluation
using CAST.

• 50/50: NSGA-III evaluates 50 generations on the surro-
gate model and 50 generations using CAST.

• 95/5: NSGA-III evaluates 95 generations using the sur-
rogate model and five generations using CAST.

• 1: We took the output of our ϵ-constraint approach and
evaluate it using CAST. This configuration will serve as
a control configuration.

To keep a low number of evaluations on CAST, we executed
our proposed approach 11 times for each of the previously
mentioned configurations. To have better insights regarding
the use scenarios of the configurations, we measured the time
and computed the convergence according to the ratio of the
hypervolume.

Figure 12 displays the ratio of the HV results. From this
figure, it is clear that the control execution, which consists
of five points obtained by the ϵ-constraint method, does not
achieve competitive results regarding the two configurations
of the proposed approach. On the other hand, the results ob-
tained by the proposed approach were quite similar with both
configurations. When the proposed approach used the 50/50
configuration, it achieved slightly better results for Mineral
and Hardy. However, such a difference is questionable, as the
medians are similar. Finally, the 95/5 configuration achieved
slightly better results on Berkeley and Jefferson counties.

We decided to apply Friedman’s χ2 test to validate our
results [12]. The test evaluates the position of the observed
values within each group and informs us if there are sig-
nificant disparities between the groups. The results of this
test are shown in Table VI. The results indicate that there
is a significant difference between the groups. Therefore, we
calculated pairwise comparisons using the Nemenyi post hoc
test to identify the different configurations [24]. Figure 13
shows the results obtained by applying the Nemenyi post
hoc test to the data. The plot is separated by county. The
rows indicate the configuration used, and the columns refer
to the compared configuration. The main diagonal of each
county is empty. We included the p-value on each square and
colored p-values less than 0.05. The results indicate that both
proposed approaches’ configurations differ from the control.
However, there is insufficient information to indicate that both
configurations are statistically different.

TABLE VI
FRIEDMAN’S χ2 ON THE RESULTS FOR THE DIFFERENT CONFIGURATIONS.

Statistics Berkeley Mineral Hardy Jefferson

χ2 16.9 17.6 19.9 16.5
p-value 0.0002 0.0001 0.0002 0.0002

Table VII shows the time required by the different con-
figurations. As we can see, when the CAST was used for
50 generations, the approach required around 143 minutes to
complete one single execution. The time was greatly dimin-
ished with the reduction of the evaluations on CAST. It took
around 18 minutes to evaluate five generations on CAST and
around three minutes on average for the control execution.

It is observed that the use of 95/5 approach takes about
eight times faster, on an average, and produces almost similar
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(in some cases, better) performance. Hence, 95/5 approach
shows promise for its practical deployment in large-sized
CBW problems.

TABLE VII
TIME REQUIRED IN MINUTES BY THE DIFFERENT CONFIGURATIONS:

50/50 - 50 GENERATIONS EVALUATED ON THE SURROGATE MODEL AND
THEN 50 GENERATIONS EVALUATED ON CAST. 95/5 - 95 GENERATIONS

EVALUATED ON THE SURROGATE MODEL AND THEN 5 GENERATIONS
EVALUATED ON CAST. 1 - THIS IS OUR CONTROL CONFIGURATION,

WHICH CONTAINS THE SOLUTIONS PROVIDED BY OUR ϵ-CONSTRAINT
APPROACH.

50/50 95/5 1

Best 138.90 17.53 2.70
Worst 152.96 20.55 3.80
AVG 143.79 18.20 3.18
STD 2.61 0.69 0.33

Berkeley Mineral Hardy Jefferson
County

0.84

0.86

0.88

0.90

0.92

0.94

0.96

HV
R

Configuration
50/50
95/5
1

Fig. 12. Ratio of the hypervolume obtained by the different compared
configurations: 50/50: 50 generations evaluated on the surrogate model and
then 50 generations evaluated on CAST. 95/5: 95 generations were evaluated
on the surrogate model, and then five generations were evaluated on CAST.
1: This is our control configuration, which contains the solutions provided by
our ϵ-constraint approach.

B. Analysis of Trade-off Solutions

The proposed approach generated three non-dominated so-
lutions from the Pareto front, and Figure 14 displays the spatial
allocation of BMPs in West Virginia associated with these
solutions. However, it is worth emphasizing that the color
assigned to a BMP in an LRS does not indicate its location
or degree of implementation. Instead, the color is solely used
to signify the proportion of implementation of that particular
BMP in relation to all other BMPs implemented within the
same LRS.

Solution 1, selected from the top left corner of the Pareto
front, represents the BMP implementation scenario character-
ized by the lowest cost and the highest nitrogen load. Out
of hundreds of BMPs that are eligible for implementation,
only two were selected (Barnyard Runoff Control and Nu-
trient Management). However, Solution 1’s most prevalent
and applied BMPs belong to Nutrient Management. Out of
the qualified BMPs, this particular BMP has the lowest unit
cost and is responsible for 95% of the nitrogen reduction
load. Solution 2 sits in the middle of the Pareto front and
is closest to the reference point. The solution is characterized

Fig. 13. The Nemenyi post hoc test applied to the hypervolume ratio from
different configurations: 50/50: 50 generations on the surrogate model, then
50 on CAST; 95/5: 95 on the surrogate model, then 5 on CAST; and 1: the
control with the ϵ-constraint approach, all on CAST. Squares display p-values,
with red scaling for p-values < 0.5, indicating a statistical difference.

by the average implementation cost and modest nitrogen load
reduction. In general, solutions from this portion of the Pareto
front are popular with both stakeholders and producers, as
they offer cost-effective watershed management plans. There-
fore, a larger group of BMPs is selected to represent this
intermediate solution comprised of six BMPs (Agricultural
Stormwater Management, Barnyard Runoff Control, Cover
Crop, Forest Harvesting Practices, Nutrient Management, and
Off-Stream Watering Without Fencing). Similar to the Solution
1 implementation strategy, Nutrient Management was the most
dominant BMP and responsible for approximately 94% of
the total nitrogen load reduction. Nevertheless, the Off-Stream
Watering Without Fencing BMP has been implemented more
extensively than other BMPs in several LRSs. Finally, Solution
3 falls within the bottom right corner of the Pareto front.
This point represents BMP implementation strategies that
are most efficient but cost the most among all strategies.
Compared to Solution 2, a lower number of BMPs (four)
were chosen, including Agricultural Stormwater Management,
Barnyard Runoff Control, Nutrient Management, and Off-
Stream Watering Without Fencing. Again, the most dominant
BMPs here are Nutrient Management and Off Stream Water-
ing Without Fencing. The BMP Nutrient Management aids
in approximately 83% of the total nitrogen load reduction,
while the three others assist in reducing around 17% of the
total nitrogen load. In summary, Nutrient Management and
Off-Stream Watering Without Fencing are the most selected
BMPs, while the first can be applied to both developed (e.g.,
urban) and undeveloped (e.g., agriculture) areas. In contrast,
the Off-Stream Watering Without Fencing BMP can only be
implemented on pasture-lands.

In regards to the overall cost of implementing BMPs, the
cost rose significantly from about $353,883 for Solution 1 to
about $999,442 for Solution 3. However, it is worth noting
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that under Solution 1, 97% of the total cost was related to
Nutrient Management, whereas, in Solution 3, this portion
was decreased to 47% for the same BMPs. Meanwhile, for
Off-Stream Watering Without Fencing, the distribution of the
overall cost was 0%, 42%, and 51% for Solutions 1, 2, and 3,
respectively.

Fig. 14. Example of solutions produced by our proposed approach for the
entire West Virginia state.

C. Deployment of NSGA-III-CAST with RESTful API

In a major application area serving thousands of users, it
becomes crucial to have code versatility and the software
to be readily available. Since the CAST evaluation system
is managed by different individuals and hosted in a secured
location different from the developers and the location of
the customized NSGA-III code, developing our framework
became challenging. We created an API to deploy our ap-
proach, facilitating new algorithm development and enabling
researchers to test, debug, and validate them. The two-level
API accesses CAST for scenario evaluation and execution
retrieval. Implemented in C++20, it centralizes problem com-
munication and error handling, primarily for internal use.

Our second level of API is to expose our optimization
approaches to users and decision-makers. Since this API will
be made accessible to users, we adopted a RESTful approach
using Django 4.1.1. [9].

Fig. 15. A flowchart of the proposed approach showing NSGA-III-CAST
integration.

RESTful APIs offer a popular, scalable, and reliable solution
for web APIs. They ensure a standardized, secure, and easy-
to-maintain interaction with web services. Being language-
agnostic, RESTful APIs allow developers to use their preferred
language, catering to the diverse programming preferences of
CBPO research groups.

Figure 15 shows a diagram of our implemented system. It is
worth noting that we added Redis to our deployment to access
data much faster. Redis is an in-memory data structure store
often used as a message broker, cache, and database. It is a
popular choice for developers because of its speed, flexibility,
and scalability.

In addition, we kept flexibility and scalability in mind while
developing our solution. Therefore, for the first API, the so-
called CAST-Interaction API, we added RabbitMQ to our
structure to make asynchronous calls to the system. Rab-
bitMQ is a messaging software that implements the Advanced
Message Queuing Protocol (AMQP). It sends, receives, and
processes messages between systems and applications.

Finally, the CAST system stores their evaluations using the
Amazon Simple Storage Service (or Amazon S3). Therefore,
we implemented an Amazon S3 monitor to gather the sce-
narios that have been evaluated by CAST. A more detailed
architecture of our proposed integration can be found at
https://api4opt-dev.chesapeakebay.net/api4opt.

V. CONCLUSIONS
Through an extensive study, we have shown that care-

fully designed customized optimization algorithm components
can result in a practical solution to complex problems. Our
approach has involved utilizing surrogate models, a biased
initialization technique, and a repair operator to efficiently gen-
erate sub-optimal scenarios while minimizing computational
expenses and guaranteeing the viability of involving 1,012 to
153,818 real-parameter variables exhibiting the effectiveness
of the proposed approach in solving practical problems using
an evolutionary multi-objective optimization algorithm.

We have developed a customized and computationally ef-
fective methodology that can assess scenarios using either
the surrogate model or the CAST system, or a combination
of both, through state-of-the-art API and storage manage-
ment techniques. As a result, we have conducted a study
to acquire insights into how our methodology performs with
each evaluation system. Our investigation has revealed that
the approach could leverage the surrogate model for most of
the search process, with only a small number of generations
in the CAST at the end producing competitive results. Our
developed algorithm and corresponding results have provided
evidence that customizing the genetic algorithm’s components
is essential for effectively addressing large-scale problems to
be solved with a limited computational time.

To the contrary to general belief, we have also observed
for this practical problem that increasing the problem size
does not necessarily make the problem more complex to
solve. In this specific watershed management problem, in-
cluding more counties to find a desired environment-friendly
solution has been found to be relatively easier than trying
to reduce a similar percentage of pollutants from certain
individual counties. This observed phenomenon gives us the
promise to extend the scope of optimization to multi-state
to the whole watershed level involving millions of variables.
Nevertheless, this study remains a hallmark optimization study
for handling a real-world optimization problem having over
150,000 variables integrating an optimization algorithm with

https://api4opt-dev.chesapeakebay.net/api4opt
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a real-world computationally expensive evaluation tool and
hybridizing with the surrogate-assisted and fast point-based
method. Lessons learned from this extensive large-scale study
can be extended to tackle other such real-world problems.

The importance of this research comes from the fact that
it aims to determine the most cost-effective watershed man-
agement plan that improves water quality at the lowest cost.
Due to the size of the study area and types of BMPs, thou-
sands of variables needed to be considered. Researchers can
evaluate and compare various BMP implementation plans at a
large scale through the methods introduced in this study. By
finding several alternate solutions to the proposed approach,
decision-makers can identify the most suitable BMPs that offer
maximum environmental benefits at the lowest cost, making it
an invaluable tool for watershed managers. The multi-objective
approach allows decision-makers to select the most-preferred
solution by considering stakeholders’ preferences, such as
financial constraints, meeting specific water quality targets,
and other logistics-related constraints. Overall, this enables us
to make informed and effective decisions when implementing
water quality initiatives.

In addition to nitrogen, we plan to incorporate other pollu-
tants like phosphorus and sediments as objective functions in
our future work. This broadening of objectives will enhance
the complexity of the optimization problem, transitioning
it into a many-objective optimization framework. Such a
transition may likely introduce specific challenges, including
the presence of dominance resistance solutions. Our future
research work will address these complexities by developing
and refining our methodology with cone dominance and other
means.
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