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Eutrophication and hypoxia represent an ever-growing stressor to estuaries and

coastal ecosystems due to population growth and climate change.

Understanding water quality dynamics in shallow water systems is particularly

challenging due to the complex physical and biogeochemical dynamics and

interactions among them. Within shallow waters, benthic microalgae can

significantly contribute to autotrophic primary production, generate organic

matter, increase dissolved oxygen consumption, and alter nutrient fluxes at the

sediment–water interface, yet they have received little attention in modeling

applications. A state-of-the-art modeling system, the Semi-Implicit Cross-Scale

Hydroscience Integrated System Model (SCHISM), coupled with the Integrated

Compartment Model (ICM) of water quality and benthic microalgae, has been

implemented in the Corsica River estuary, a tributary to Chesapeake Bay, to study

benthic microalgal impact on water quality in shallow water systems. The model

simulation has revealed a broad impact of benthic microalgae, ranging from

sediment–water interface fluxes to water column dynamics, and the effects are

observed from near-field to far-field monitoring stations. High-frequency

variability and non-linearity dominate benthic microalgal dynamics, sediment

oxygen demand, and nutrient fluxes at the sediment–water interface. Resource

competition and supply determine the spatial scope of benthic microalgal

impacts on far-field stations and the whole estuary system. Our study shows

that benthic microalgae are a significant factor in shallow water dynamics that

needs adequate attention in future observation and modeling applications.
KEYWORDS

shallow water systems, water quality, benthic microalgae, high-frequency variability,
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1 Introduction

Eutrophication and hypoxia in coastal and estuarine systems is

an ever-growing environmental challenge in the 21st century (Diaz

and Rosenberg, 2008; Howarth et al., 2011; Rabalais et al., 2014;

Hale et al., 2016; Wåhlström et al., 2020; Dai et al., 2023).

Agricultural fertilizer and manure applications, wastewater,

stormwater, and atmospheric deposition from fossil fuel emission

are among the major factors contributing to nutrient loading to

coastal oceans (Bricker et al., 2008). Climate change has exacerbated

and will continue to exacerbate water quality degradation in the

coming decades and beyond (Sinha et al., 2017; Breitburg et al.,

2018; Ni et al., 2019). Climate warming will decrease dissolved

oxygen (DO) solubility and increase respiration and stratification,

leading to acceleration of hypoxia development (Tian et al., 2021).

Chesapeake Bay, located on the east coast of the U.S.A., experiences

recurring hypoxia during summer each year (Boynton, 1997;

Murphy et al., 2011; Scavia et al., 2021). Chesapeake Bay is a

relatively shallow system with an average depth of 6.4 m and

shallow waters < 2 m account for 24% of the total surface area.

However, less attention has been given to shallow areas as compared

to the deep Bay. Shallow water systems are particularly complex

where an array of physical dynamics interact, such as tidal mixing

and advection, sea level rise, waves, river discharge, sediment and

nutrient loads from the watershed (McGlathery et al., 2013; Xiao

et al., 2021). Interactions and feedbacks between abiotic and biotic

processes can cause nonlinear response in water quality to

environmental forcing (Su et al., 2022). One typical characteristic

of shallow water systems is that light penetrates through the water

column and reaches the bottom for benthic microalgal

development. Benthic microalgae, mostly of cyanobacteria,

dinoflagellates, and diatoms, are adopted to lower light conditions

as compared to water column phytoplankton and can grow under

conditions of only 2% of surface light, conditions that are unsuitable

for phytoplankton (Longphuirt et al., 2007; Gomez et al., 2010;

Semcheski et al., 2016; Pinckney, 2018). In clear water systems like

the South Atlantic Bight, light can penetrate down to 20 to 40 m

where benthic microalgae were observed (Pinckney, 2018). In

estuaries and shallow water systems, where light penetration is

limited by turbidity, benthic microalgae are limited to the shallow

regions. Benthic microalgae can contribute significantly to

autotrophic primary production, which represents a major

component of estuarine ecosystems (Rizzo et al., 1996;

Underwood and Kromkamp, 1999; Underwood, 2005). Benthic

microalgal production can surpass phytoplankton production in

certain coastal and estuarine systems (Varela and Penas, 1985;

Wazniak, 2016; Serôdio and Paterson, 2021), but with large

spatial variation ranging from 50 g C m−2 yr−1 to over 1,000 g C

m−2 yr−1 (Cahoon, 2006). Kemp et al. (2005) estimated that benthic

microalgae accounted for up to 30% of phytoplankton production

in the upper Chesapeake Bay where the Corsica River is located. Yet,

limited attention has been given to benthic microalgae in modeling

applications, partly because of inappropriate model resolution and

flexibility to solve the coastal geometry. Cerco and Seitzinger (1997)

pioneered a study in benthic microalga simulation in Indian River–
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Rehoboth Bay, a shallow water estuarine system located on the

Atlantic coast in Delaware, USA. A module of benthic microalgae

was developed and implemented within the framework of the

Integrated Compartment Model (ICM) of water quality. ICM,

with the benthic microalgae module, was coupled with the

Curvilinear-Grid Hydrodynamic 3D Model (CH3D) and used for

water quality simulation in Chesapeake Bay (Cerco and Noel, 2004;

Cerco and Noel, 2019). However, CH3D was set up to simulate the

deep bay. The minimum depth of the CH3D grid was 2.13 m (7

feet), which is at the depth limit of benthic microalgal development

in certain areas. As such, benthic microalgae were not properly

resolved in shallow water systems in Chesapeake Bay. In this study,

we coupled the benthic microalga model with the state-of-the-art

unstructured-grid, Semi-Implicit Cross-Scale Hydroscience

Integrated System Model (SCHISM) and applied the model

system to the Corsica River with high-resolution grids covering

water depths as shallow as 10 cm. The Corsica River, a sub-tributary

of Chesapeake Bay (Figure 1), provides a unique opportunity for

shallow water studies where abundant data have been collected over

the years. Electronic sensor-based continuous monitoring often

shows high-frequency and large amplitude variability in DO and

chlorophyll in shallow water systems (Shen et al., 2008; Graziano

and Jones, 2017; Duvall et al., 2022). The understanding and

modeling of these large high-frequency variations represent a

challenge for the modeling community (Xia et al., 2010; Xia et al.,

2011; Xia and Jiang, 2015; Tian, 2019; Tian, 2020; Tian et al., 2022).

The objective of this study is to investigate the mechanisms

controlling benthic microalgal dynamics and their impact on

water quality high-frequency variability in shallow water systems

using this fully coupled physical, water quality, and benthic

microalga modeling system. The paper is organized as follows:

The “Methods” section describes the model platform, the benthic

microalga model, forcing data, observational data used for

calibration and validation, and data analyses using the generalized

additive model (GAM) and spectral analysis. The “Results” section

presents comparisons between simulation and data, benthic

microalgal spatial distribution and time series, high-frequency

variability in DO and nutrient fluxes at the sediment–water

interface, and changes in the water column due to benthic

microalgae. The “Discussion” section focuses on the

interpretation of benthic microalgae simulation in space and time,

high-frequency variability based on statistical analysis, and spatial

cascading effect from near-field to far-field stations.
2 Methods

2.1 Models

Detailed description of SCHISM and ICM are available at

https://www.schism.wiki. Only a short description is given here.

SCHISM employs a flexible unstructured grid with a highly efficient

semi-implicit finite-element Eulerian-Lagrangian algorithm to solve

the physical (Equations 1 and 2) and transport equations (Equation

3; Zhang et al., 2016):
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Momentum equation :  
Du
Dt

=
∂

∂ z
n
∂ u
∂ z

� �
− g ∇ h + F (1)

Continuity equation :∇ · u +
∂w
∂ z

= 0  ;  
∂h
∂ t

+∇ ·
Z h

−h
udz = 0 (2)

Transport equation :
∂C
∂ t

+∇ · (uC) =
∂

∂ z
(k

∂C
∂ z

) + Fh (3)

where ∇ is the differential operator del ∂
∂ x ,

∂
∂ y

� �
; h(x,y,t) is the

surface elevation; h(x,y) is the bathymetry; u(z,y,z,t) is the

horizontal velocity; w is the vertical velocity; F represents other

forcing terms such as baroclinic gradient ( − g
r0

Z h

z
∇ rdz ),

horizontal viscosity, Coriolis force, tide, and atmospheric

pressure; C is the tracer concentration; n is the vertical viscosity;

k is vertical eddy diffusivity; and Fh represents the horizontal

diffusion and source/sink terms. Flexibility in space and time is

the key feature in SCHISM for this study. The unstructured grid

ensures that the model fits the complex shoreline in the Corsica

River, and the terrain-following vertical grid guarantees fine vertical

resolution without bathymetry smoothing. The semi-implicit

feature enables the flexibility in the time step and model

advancement during the simulation.

ICM has 36 state variables, including three phytoplankton

groups; two zooplankton groups; four types of nutrients; labile

and refractory dissolved organic carbon (DOC), nitrogen (DON),

and phosphorus (DOP); labile (G1), refractory (G2), and inert (G3)

particulate organic carbon (POC), nitrogen (PON), and phosphorus

(POP); DO; chemical oxygen demand (COD); and five classes of

sediments (sand, silt, clay, organic detritus, and total inorganic

solids) (Figure 2A). The model structure of ICM is flexible, and the

state variables can be turned on or off depending on the interest of
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each application. In this application, the zooplankton

compartments, refractory dissolved organic matters, inert

particulate organic matter, silicate, and sediment variables were

turned off (Figure 2B). The model has four benthic modules:

submerged aquatic vegetation (SAV), tidal wetland, benthic

microalgae, and shellfish. In this application, only the benthic

microalgae module was activated. Detailed kinetics and

parameterization can be found in previous publications (Cerco

and Noel, 2004; Tian et al., 2021; Cai et al., 2022). Briefly, the

governing equation of phytoplankton (B) is:

∂B
∂ t

= (m − am) · B − aP · B   +∇ ·(uB) +∇ · (D∇ B) (4)

where m is the phytoplankton growth rate, am is the respiration loss

term, ap represents the predation loss and the last two terms are

advection and turbulent diffusion, respectively (Equation 4). The

phytoplankton growth rate (m) is controlled by water temperature,

photosynthetically active radiation (Jassby and Platt, 1976) and

nutrient resource, which is parameterized using the Michaelis-

Menten function:

m = mmax · e
−KT(1,2)(T−To)

2 Iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 + K2

I

p min
N

N + KN
,

P
P + KP

� �
(5)

where µmax is the maximum growth rate; TO is the reference

temperature where phytoplankton growth rate reaches its

maximum, KT(1,2) is the coefficient determining the temperature

control on phytoplankton growth with KT(1) for temperature < TO
and KT(2) for temperature > TO, I is the photosynthetically active

radiation (PAR), KI is the the growth-radiation coefficient, N and P

are nitrogen and phosphorus concentrations, and KN and KP are the

half-saturation constants, respectively (Equation 5).
FIGURE 1

Geographic location of the simulation domain and grid. Background color of the left panel is the Chesapeake Bay bathymetry ranging up to 40 m
(blue). Red triangles on the right panel are the seven freshwater discharge locations from the Corsica watershed. Red dots are the four Corsica River
stations with cruise-based observation data.
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DO envolves most of the variables and its decription provides

an overview of the ICM water quality model. DO is determined by

photosynthesis product ion , respirat ion consumption,

remineralization of DOC, nitrification, chemical oxygen demand

(COD), aereation at the sea surface, and sediment oxygen demand

(SOD) at the bottom:
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∂DO
∂ t

= aOC½(1:3 − 0:3pNH) · m − am� · B − aON · NT − aDOC

· aOC ·
DO

kOC + DO
· DOC − aCOD·

DO
kCOD + DO

· COD

+
aair

DZS
(DOs − DO) −

SOD
DZB

(6)
B

A

FIGURE 2

(A) Diagram of the major compartments and energy flows in the water quality model ICM. G1, G2, and G3 are the particulate organic compartment
categories based on their reactivity (G1: labile; G2: refractory; and G3: inert). COD is chemical oxygen demand, SOD is sediment oxygen demand,
and SAV is submerged aquatic vegetation and sediments including sand, silt, clay, and organic detritus. (B) State variables turned on for this study.
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where aOC is the ratio between oxygen and carbon in phytoplankton

and organic matters, pNH is the preference of ammonium uptake by

phytoplankton, am is the phytoplankton respiration coefficient, aON is

the ratio between oxygen and nitrogen in nitrification, NT is

nitrification, aDOC is the DOC remineralization rate, kOC is the

half-saturation constant of DO for DOC remineralization, aCOD is

the oxidation rate of COD, kCOD is the half-saturation constant for

COD oxidation, DOs is DO saturation at a given temperature and

salinity, DZs is the thickness of the surface layer, DZB is bottom layer

thickness (Equation 6). DO aeration is applied to the surface layer and

SOD to the bottom layer. When carbon fixation is based on nitrate

uptake, 30% more oxygen is released as compared to ammonium

uptake (the 1.3 constant in the first term of Equation 6; Morel, 1983).

The Di Toro (2001) sediment diagenesis model was

incorporated in ICM, which simulates fluxes and exchanges at the

sediment-water interface. Brady et al. (2013) and Testa et al. (2013).

have provided comprehensive description on the diagenesis model

application in Chesapeake Bay. Basically, the diagenesis of organic

matter deposited to the sediment yields sulfide, methane, and

ammonium whose oxidation constitutes the sediment oxygen

demand (SOD). Under anaerobic conditions, sulfide and methane

can be released directly to the bottom water to support additional

oxygen consumption (COD).

The benthic microalga model based on Cerco and Seitzinger

(1997) is coupled with SCHISM with an unstructured grid for

coastal shallow water systems. The mass balance of benthic

microalgae is determined by growth, respiration, and predation loss:

∂ B
∂ t

= (G − R − P)B (7)

where B is the benthic microalgal biomass in g C m−2 and G, R, and

P represent the growth, respiration, and predation terms,

respectively (Equation 7). Benthic microalgal growth is controlled

by light, temperature, and nutrient availability. Benthic microalgal

self-shading is parameterized as a function of benthic microalgal

biomass and its light attenuation coefficient:

IBA = IBe
−kS (1 − e−kBIB)=(kBIB) (8)

where IBA is light available to benthic microalgal photosynthesis, IB
is light at the sediment surface, kS is the sediment solids light

attenuation coefficient, and kBI is benthic microalgal light

attenuation for self-shading (Equation 8). The light–growth curve

is formulated as the Jassby–Platt function (Jassby and Platt, 1976):

f (I) =
IBAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2BI + I2BA
p (9)

where the light half saturation hBI
2 is related to the ratio of the

growth rate [GBf(T)] to the initial slope of the light growth curve aB.

f(T) is the temperature influence on benthic microalgal growth and

is formulated as an exponential function:

f (T) = e−kb(T−TbO)
2

(10)

where kb is the exponential coefficient and TbO is the reference

temperature set at 20°C (Equation 10). Nutrient limitation on benthic

microalgae is parameterized with the Michaelis–Menten function:
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f (N) =
N

hN + N
(11)

where hN is the half-saturation constant and N is the available

nutrient (nitrogen or phosphorus) to benthic microalgae

(Equation 11). The available nutrient concentration is

computed as the sum of the bottom water concentration and

sediment flux divided by the bottom cell thickness. Both

respiration and predation loss of benthic microalgae are also

formulated as an exponential function:

(R, P) = e(amb , apb )(T−TbO) (12)

where amb(or  apb) is the exponential coefficient for metabolism (or

predation) (Equation 12). All the effects of benthic microalgae activities

on solute constituents are added to sediment fluxes, including DO

photosynthesis production and respiration consumption, nutrient

uptake and respiration release, and DOC flux from benthic

microalgal metabolism. On the other hand, solids production of

benthic microalgae is added to the corresponding sediment

components, essentially organic carbon, nitrogen, and phosphorus.

Model parameter definition and values are listed in Table 1.

The simulation domain covers the entire Corsica River

(Figure 1). Grid resolution is approximately 100 m at the river

mouth to 20 m near the coastline, with 5,614 cells, 3,159 nodes, and

five vertical sigma layers. The simulation time step was set at 120 s.

The model was first calibrated with the observation of the entire

year 2006 without benthic microalga simulation. This run was used

as the benchmark for comparison and called the “control run.”

Upon the control run, the benthic microalga simulation was

activated and called the “scenario run,” the comparison of which

with the control run allowed us to assess the impact of benthic

microalgae on DO and nutrient fluxes at the sediment–water

interface and primary production, chlorophyll concentration, and

DO in the water column, and these for both near-field stations

where benthic microalgae grew and far-field stations where benthic

microalgae were prohibited by environmental conditions.
2.2 Data

Short and long-wave radiation data were obtained from the

Reanalysis V5 (ERA5) of the European Centre for Medium-Range

Weather Forecasts (https://www.ecmwf.int/en/forecasts/dataset/

ecmwf-reanalysis-v5). Air temperature, wind, precipitation, pressure,

and specific humidity data were downloaded from the North American

Regional Reanalysis domain (NARR; https://www.ncei.noaa.gov/

products/weather-climate-models/north-american-regional). River

discharge and nutrient loads were simulated by the Hydrological

Simulation Program–FORTRAN (HSPF), calibrated with the USGS

River InputMonitoring (RIM) stations of the Chesapeake Bay Program

(Shenk et al., 2012; Shenk and Linker, 2013). Daily river discharge and

nutrient loads were available at seven loading points in the Corsica

River domain for the simulation year (Figure 1). Open boundary

conditions were based on the CH3D-ICM simulation in the entire

Chesapeake Bay, calibrated against long-term monitoring data for

regulatory purposes over the past 30 years (Cerco and Noel, 2019).
frontiersin.org
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Twenty-one discrete sampling events were carried out from April

through December by the Department of Natural Resources of

Maryland (DNR-MD, USA). Four stations were occupied for

measurement of water temperature, salinity, and chlorophyll during

each sampling event: the tidal water head station COR005, the upper

estuary station XHH3851, the mid-estuary station XHH4931 and lower

estuary station XHH4916 (Figure 1). Measurements of sediment

oxygen demand (SOD) and sediment-water ammonium fluxes

collected during previous projects were also used to validate the

diagenesis model simulation (Boynton et al., 2009; Boynton et al., 2018).
2.3 Data analysis

Generalized Additive Model (GAM) was used to identify the major

predictors and characterize the nonlinear relationships between the

predictors and the dependent variable (Wood, 2004; Wood, 2006;

Harding et al., 2016). GAM from the “mgcv” package in R was applied

to the simulated timeseries data of benthic microalgae production and

DO flux at the sediment water interface with cubic spline (Hastie and

Tibshirani, 1986; Murphy et al., 2022). Spectral analysis was performed

on the simulated DO flux to identify the major frequencies within the

complex variations in the timeseries data (Olson, 1986; Sanford et al.,

1990; Fleming et al., 2012). The contribution of each individual frequency

is characterized in the periodogram and the variance of each signal is

quantified by the spectrum power density, defined as the amplitude

power of the signal. Taylor Diagram was used to compare the scenario

run with benthic microalgae and the control run without benthic

microalgae. Taylor Diagram compares between simulations and

observations in terms of correlation coefficients, standard deviations of

both simulation and observation and centered root mean squared errors

(CRMSE) on the same diagram (Taylor, 2001; Tian et al., 2014). The

correlation coefficient between simulation and observation is expressed as

the angle from the y axis, the normalized standard deviation (std) of the

simulated results (simulation std divided by observation std) is given by

the distance from the origin, and the centered root mean squared error of

the simulation is measured by the distance between the simulation point

and the observation point (see illustration in the “Results” section).
3 Results

3.1 Physical conditions during the
simulation year

There was a flushing event in the summer of 2006, with

freshwater discharge reaching 27 m3 s-1 and dissolved inorganic

nitrogen (DIN) loads up to 4,200 kg N day-1 (Figure 3A). River

discharge and nutrient loads were also relatively elevated earlier in

the year and in the fall. There were two dry periods between the

flushing events (Day 60 to 170 and 210 to 240) when river

discharge was below 2 m3 s-1. Air temperature displayed a

typical seasonal cycle, up to 36 °C in summer and as low as 0 °C

in winter (Figure 3B). In addition to the seasonal cycle, higher

frequency variations on the order of weeks to a month was

observed. Wind also showed high frequency variability, with
TABLE 1 Parameter definition, values and units (empty cells
indicate dimensionless).

Symbol Definition Value Unit

B Phytoplankton biomass Variable g C m−3

I Light Variable W m−2

VW Wind speed Variable m s−1

aOC O:C ratio in metabolism
and remineralization

2.67 g O2

g−1 C

aON O:N ratio in nitrification 4.33 g O2

g−1 N

a0 Reaeration rate 0.157 s−1

aCOD COD oxidation rate 2 d−1

aDOC DOC remineralization rate 0.3 d−1

am Metabolism coefficient 0.2 d−1

ap Grazing coefficient 0.05 d−1

amb Metabolism coefficient for
benthic microalgae

0.03 °C−1

apb Grazing coefficient for
benthic microalgae

0.03 °C−1

aW Wetland DO consumption 1.25 g O
m−2 d−1

hBI Light constant for benthic microalgae 10 W

kb Exponential coefficient for
benthic microalgae

0.02 °C−1

kBI Benthic microalgae light attenuation 0.2 m2 g−1

hN Nutrient constant for benthic microalgae 0.03 g N m−3

KCOD Half-saturation constant for
COD oxidation

0.5 g O m−3

KI Light constant for phytoplankton growth 50 W

KN Half-saturation constant for
nitrogen uptake

0.025 g N m−3

KOC Half-saturation constant of DO for
DOC remineralization

0.5 g O m−3

KP Half-saturation constant for
phosphorus uptake

0.0025 g P m−3

ks Sediment light attenuation 0.5

KT1 Temperature coefficient for
phytoplankton growth

0.02 °C−1

KT2 Temperature coefficient for
phytoplankton growth

0.02 °C−1

To Optimal reference temperature for
phytoplankton growth

16,
37, 37

°C

Tbo Reference temperature for
benthic microalgae

30 °C

µmax Phytoplankton maximum growth rate 4.5 d−1
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frequencies in the order of hours to days (Figure 3B). Stronger

wind was observed in winter and fall than in summer. Both

seasonal and diel cycles were observed in the timeseries of

photosynthetically active radiation (PAR) (Figure 3C). PAR was

about 200 W m-2 during the day in winter and reached up to 450

W m-2 in summer. On top of the seasonal and diel cycles, cloud

coverage interrupted the continuous regular variation, leading to

low radiation from time to time regardless of the season.
3.2 The control run

The control run without benthic microalgae was calibrated with

the data and served as a benchmark for comparison with the
Frontiers in Marine Science 07
scenario simulation with benthic microalgae (Figure 4). The

model mostly reproduced the observed features in a variety of

variables, including temperature (Figures 4A–D), salinity

(Figures 4E–H), DO (Figures 4J–L), chlorophyll (Figures 4M–P),

SOD (Figures 4Q–T), and ammonium flux from the sediment

(Figures 4U–X). Temperature was dominated by the seasonal

cycle with low temperature down to 0°C in winter and high

temperature up to 35°C in summer. Modeled results compared

well with observations, including high-frequency variations on the

order of weeks. The major feature in salinity was the freshening

event in summer due to high precipitation and freshwater discharge

shown in Figure 3. Low salinity was also observed in late winter–

early spring due to elevated discharge. The model reproduced these

major features in both magnitude and duration. The DO simulation
B

C

A

FIGURE 3

Model physical conditions for the calendar year 2006, including (A) total freshwater discharge (blue line) and DIN load (red dashed line), (B) air
temperature (blue line) and wind speed (red line), and (C) PAR (Tian et al., 2022).
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was dominated by a seasonal cycle with high values in spring and

fall, low values in summer, and transitional during other periods of

the year (Figures 4J–L). On top of the seasonal cycle, the model

predicted diel high-frequency variability in DO, resulting from net

photosynthetic production during daytime and net respiration

consumption during the night. Field observation data were mostly

within the range of model prediction. A similar pattern can be

observed in the chlorophyll simulation (Figures 4M–P). The model

predicted higher chlorophyll concentrations during spring and

summer and lower concentrations in the fall and winter. The
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model also predicted diel frequency variability on top of the

seasonal cycle of chlorophyll concentration, which is a

phenomenon revealed in shallow water systems by electronic

sensor-based continuous monitoring (Shen et al., 2008; Graziano

and Jones, 2017; Duvall et al., 2022). The high chlorophyll

production in summer was related to the precipitation event that

brought high nutrient loads in summer. The chlorophyll data were

scattered with large variations. The data tended to support high

chlorophyll concentrations in summer at the two upper estuary

stations (Figures 4M, N) but showed relatively lower chlorophyll
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FIGURE 4

Comparison between model simulations (blue lines) cruise-based, discrete sample data (red dots) at four observation stations for surface water
temperature (A-D), salinity (E-H), DO (I-L), chlorophyll (M-P), sediment oxygen demand (Q-T) and ammonium flux at the sediment-water interface
(U-X).
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concentrations at the lower estuary stations as compared to the

model prediction (Figures 4O,P). These two low estuary stations

were closer to the open boundary and more subject to the open

boundary conditions. SOD is expressed as negative, implying DO

flux from the water column to the sediment (Figures 4Q–T). Larger

values were simulated during the summer season than the rest of

the year. Variability with frequencies on the order of weeks was

simulated in addition to the seasonal cycle. The SOD simulation

and observation data were comparable, with data mostly within the

range of model variations. Similarly, the ammonium fluxes were

also comparable between the data and simulation (Figures 4U–X).

Higher values were simulated and observed in summer than during

other seasons. Overall, the control run provided a reasonable

solution as compared to the observation.
3.3 Seasonality and spatial distribution of
benthic microalgae

The biomass of benthic microalgae stayed at a relatively

elevated level of approximately 5 g C m−2 early in the year in

January and February at the tidal headwater station COR0056 but

decreased considerably in March to 3 g C m−2 (Figure 5). Benthic

microalgae bloomed up to 5 g C m−2 around April, followed by a

long period of limited abundance through the summer until

October and November when the biomass increased up to 7 g C

m−2 and then decreased to a moderate level of approximately 5 g C

m−2 as at the beginning of the year. The annual average biomass of

benthic microalgae was 3.2 g C m−2, which is within the range of

field observation. Gould and Gallagher (1990) reported

abundance of benthic diatoms ranging from 2 g C m−2 to 15 g

C m−2 in the coastal region of Massachusetts Bay. A DNR survey

of the Maryland Atlantic coastal regions reported active benthic

chlorophyll abundance ranging from 24 mg chlorophyll m−2 to 52

mg chlorophyll m−2 (DNR, 2016). Assuming a C:chlorophyll ratio

of 50 (19–60; Gould and Gallagher, 1990), the benthic microalgal

biomass would range from 1.2 g C m−2 to 2.6 g C m−2. Cahoon and
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Safi (2002) reported active benthic chlorophyll of up to 250 mg

m−2. Benthic microalgal primary production was generally lower

during the summer months as compared to that in spring and fall

based on remote sensing data and spectral information (Méléder

et al., 2020; Jacobs et al., 2021).

Benthic microalgae extended to 2 m deep along the coast, but

higher abundance was mostly within the 1-m isobath of bathymetry

(Figure 6). Significant abundance of benthic microalgae was

simulated in all the tidal headwaters and in most of the coastal

regions. Among the four observation stations, only the tidal

headwater station COR0056 is located within the benthic

microalga zone and all other stations are outside the areas with

significant benthic microalga abundance. Consequently, station

COR0056 is considered as a near-field station and other stations

as far-field stations. Station XHH4931, the mid-estuary station, is in

an area where benthic microalgae were particularly scarce so that it

is used as an example of far-field stations in the following sections.
3.4 Benthic microalgal impact on DO and
nutrient flux

High-frequency variability of DO flux with large amplitudes

was simulated in the tidal headwater station COR0056 under the

influence of benthic microalgae (Figure 7A, green line). The

amplitudes reached up to 10 g O m−2 day−1, and the frequencies

were within diel cycles. The control run without benthic microalgae

did not generate high-frequency variability (Figure 7A, blue line).

The DO flux variability in the simulation without benthic

microalgae was mostly within 2 g O m−2 day−1, and the

frequencies were on the order of weeks on top of the seasonal

cycle. Both simulations predicted larger DO flux in summer than

the rest of the year (negative DO flux indicating DO flux from the

water column to the sediment). At the far-field station XHH4931,

the model did not predict high-frequency variations in DO flux

(Figure 7B). However, the simulation with benthic microalgae

(Figure 7B, green line) predicted DO flux significantly larger than
FIGURE 5

Time series of benthic microalgal biomass simulated at the tidal headwater station COR0056.
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the control run without benthic microalgae during the summer

season (Figure 7B, blue line). Also, the simulation with benthic

microalgae predicted DO flux variations on the order of weeks,

whereas these variations were absent in the control run without

benthic microalgae.

Patterns similar to that of the DO flux can be observed in the

nutrient flux predictions (Figures 7C–H). High-frequency

variability was predicted in the phosphate simulation in the

scenario run with benthic microalgae, whereas the control run

without benthic microalgae did not generate similar high-

frequency variability (Figure 7C). In contrast to the DO flux for

which the high-frequency variations were skewed to the positive

side (indicating fluxes from the sediment to the water column), the

high-frequency variations in phosphate simulation were more

skewed to the negative side, indicating phosphate fluxes from the

water column to the sediment. In the control run without benthic

microalgae (Figure 7C, blue line), the phosphate fluxes were mostly

positive, i.e., phosphate release from the sediment to the water

column. The seasonal cycle remained in both runs with and

without benthic microalgae, with higher phosphate release from

sediment in summer than in the rest of the year. However, no

significant difference was predicted at the far-field station

XHH3941, where the two simulations were practically identical

(Figure 7D). Overall, phosphate release from the sediment tended

to be lower at the far-field station in the mid-estuary than at the

upper estuary.

The high-frequency variability of nitrate fluxes at the sediment–

water interface was mostly negative, indicating absorption of nitrate
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from the water column to the sediment (Figure 7E). Only during

summer was the nitrate flux positive, i.e., release from the sediment.

It is interesting to note that during a short period of time around

day 180, overall negative nitrate fluxes were simulated in both

scenarios with and without benthic microalgae. Similar events

occurred during other periods of time of the year but with

shorter durations and lower amplitudes. The high-frequency

variations in the ammonium fluxes were also skewed on the

negative side, but significant positive fluxes were simulated during

the summer season in the scenario with benthic microalgae

(Figure 7G, green line). On the other hand, ammonium fluxes

were mostly positive in the control run without benthic microalgae

(Figure 7G, blue line). At the far-field station XHH4931, the two

simulations were practically identical for nutrient fluxes at the

sediment–water interface, meaning that benthic microalgae did

not have notable influence on nutrient fluxes at the far-field

stations (Figures 7D, F, H).
3.5 Benthic microalgal impact on DO and
chlorophyll in the water column

Benthic microalgae had a significant impact on chlorophyll

concentration in the water column at the near-field station

COR0056 (Figures 8, 9). The Taylor diagram shows an overall

improvement in model–data comparison of DO and chlorophyll in

the water column (Figure 8). DO simulation in the scenario run

with benthic microalgae (red dots and squares) are closer to the data
frontiersin.o
FIGURE 6

Spatial distribution of simulated benthic microalga abundance (g C m−2), an example on Nov. 20. The two black lines are the 1- and 2-m bathymetry,
and the black dots are the four observation stations. Only station 0056 is in the benthic microalga productive region.
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point in the Taylor diagram as compared to the control run without

benthic microalgae (blue dots and squares), indicating higher

correlation coefficients and smaller root mean square errors with

the observation. Most of the correlation coefficients between DO

simulation and observation are higher than 0.85, and the centered

root mean square errors are smaller than 0.5. The chlorophyll

comparison was not as good as the DO simulation, with most of the

correlation coefficients lower than 0.85. It is a challenge to compare

discrete sampling data to a time series of data with high-frequency

variability in which the timing of the variations can considerably
Frontiers in Marine Science 11
degrade the comparison in terms of correlation coefficient and root

mean square errors. Moreover, suspension of benthic microalgae

can alter the chlorophyll concentration in the water column and

affect the model–data comparison that the model does not have the

parameterization at the current stage of model development.

The monthly average showed that chlorophyll concentration was

lower in the scenario run with benthic microalgae than in the control

run without benthic microalgae over all the months, but differences

were particularly higher in spring and summer than during the rest of

the year (Figure 9A). Chlorophyll concentration in the benthic
B
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FIGURE 7

Simulated time-series fluxes at the sediment–water interface at the near-field station COR0056 (left) and far-field station XHH4931 for DO (A, B),
phosphate (C, D), nitrate (E, F), and ammonium (G, H). Blue lines are the control run without benthic microalgae, and green lines are the scenario
run with benthic microalgae.
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FIGURE 9

Monthly average concentration of chlorophyll (A, B) and DO (C, D) at the near-field station COR0056 (left) and far-field station XHH4931 (right)
simulated in the control run without benthic microalgae (red bars) and the scenario run with benthic microalgae (blue bars).
FIGURE 8

Comparison between the scenario run with benthic microalgae (red) and the control run without benthic microalgae (blue). The green dot is the
observation data. The numbers 1–4 represent observation stations from the tidal waterhead to the river mouth, COR0056, XHH3851, XHH4931, and
XHH4916, respectively. Dots are surface DO, squares are bottom DO, diamonds are surface chlorophyll, and triangles are bottom chlorophyll. Angles
from the y-axis are the correlation coefficients between simulation and observation, distances from the origin are the normalized standard deviation,
and the distances between symbols and the data point are the centered root mean square errors. Symbols closer to the data point indicate
improvement in model–data comparison. Symbols and numbers are supposed in certain cases.
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microalga simulation was only 63% of that in the control run in April

(38 versus 60 mg L−1). But the two scenarios were more similar in

January and December when the difference was within 10%.

Chlorophyll concentration was also lower in the scenario run with

benthic microalgae than in the control run at the far-field station

XHH4931, with differences smaller than that at the near-field station

(Figure 9B). Chlorophyll concentration was 81% in the scenario run

as compared to the control run in April and at the same level between

the two runs in January and December. The annual average

chlorophyll concentration in the scenario run with benthic

microalgae was 76% of the control run at the near-field station and

90% at the far-field station.

The monthly average DO concentration was slightly higher in

the scenario run with benthic microalgae than in the control run

during most of the time (Figure 9C). However, in spring from

March through June, the monthly average DO concentration was

slightly lower in the scenario simulation than in the control run. As

the two extrema, the monthly average DO concentration was 19%

higher in the scenario simulation than in the control run in July and

4% lower in May. On an annual basis, the monthly average DO

concentration was 6% higher in the scenario simulation than in the

control run at the near-field station. A similar pattern can be

observed at the far-field station, but with reduced differences

(Figure 9D). The monthly average DO concentration was slightly

higher in the scenario simulation than in the control run during

most of the months but slightly lower in March and April. The

annual average DO concentration stood at 9.2 mg L−1 in the

scenario simulation and 8.8 mg L−1 in the control run, i.e., a

difference of 4%.
3.6 Benthic microalgal impact on
primary production

Benthic microalgae had a significant impact on the primary

production in the water column (Figure 10). At the near-field

station COR0056, phytoplankton production was systematically

lower in the scenario run with benthic microalgae than in the

control run throughout the year (Figure 10A). Phytoplankton

production in the scenario run was only 80% of that in the

control run in February and 94% in average. Benthic microalgal

production was lower in summer than in the rest of the year at the

tidal headwater station COR0056, whereas phytoplankton

production was the highest in the summer. The correlation

coefficient between benthic microalgae and phytoplankton

production was −0.86. Benthic microalgal production was higher

than the phytoplankton production in November, December, and

January but lower than the latter for the rest of the year. On an

annual basis, benthic microalgal production was 22% of the

phytoplankton production at the near-field station COR0056.

Even though phytoplankton production was lower in the scenario

run than in the control run, the total primary production with

phytoplankton and benthic microalgae combined was higher in the

scenario run than in the control run during most of the months.

Only in May through July was the total primary production lower in

the scenario run with benthic microalgae than in the control run.
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The annual total primary production was higher by 14% in the

scenario run than in the control run at the near-field station.

Benthic microalgae did not grow at the far-field station, yet the

phytoplankton production in the water column was lower in the

scenario run than in the control run (Figure 10B). The difference

was the highest in April when the phytoplankton production in the
B
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FIGURE 10

Primary production at the near-field station COR0056 (A), the far-
field station XHH4931 (B), and integrated in the entire estuary
(C) Blue is phytoplankton production in the control run without
benthic microalgae, red is phytoplankton production in the scenario
run with benthic microalgae, gray is benthic microalgal production,
and orange is the total primary production with phytoplankton and
benthic microalgae combined.
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scenario run was only 74% of that in the control run. Annual

average phytoplankton production in the scenario simulation with

benthic microalgae was lower by 11% than that in the control run

without benthic microalgae. The total benthic microalgal

production in the entire estuary was 40% of phytoplankton

production and 28% of the total primary production with benthic

microalgae and phytoplankton production combined.

Phytoplankton production integrated in the entire estuary in the

scenario run with benthic microalgae was 95% of that in the control

run without benthic microalgae, but the total primary production

with phytoplankton and benthic microalgae combined was higher

by 35% than the total phytoplankton production in the control run.
4 Discussion

4.1 Factors controlling benthic microalgal
growth and distribution

The fact that benthic microalgae are mostly limited within the

2-m isobath of water depth results from the controlling factors that

impact benthic microalgal growth in deeper waters. Benthic

microalgal growth is determined by light, nutrients, and water

temperature. During the early months of the year from January

through March, temperature was the limiting factor that restricted

benthic microalgal growth at both the near-field and far-field

stations (Figure 11). Phosphorus started to be limiting in spring,

followed by nitrogen limitation in summer at the near-field station

COR0056 (Figure 11A). Light availability was also relatively lower

in summer but sufficient for benthic microalgae to grow.

Phosphorus became more limiting in the fall, followed by

temperature restriction in December. At the far-field station, light

availability was a limiting factor from spring through fall when the

light limiting factor was mostly below 0.2. Consequently, light was

the primary controlling factor in determining the spatial

distribution of benthic microalgae that was mostly limited to the

2-m isobath of water depth. A non-linear GAM function was fitted

between benthic microalgal production and each of the four

controlling factors (Figure 12). Light turned out to be the

dominant predictor, explaining 65% of the benthic microalgal

production variance, far larger than the rest of other factors.

Temperature was the second predictor with 5% variance

explained, followed by phosphorus, 3%, and nitrogen, 2%.

Barranguet et al. (1998) and Blackford (2002) found that nutrient

limitation played a minor role in controlling benthic microalgal

production, and Bowman et al. (2007) reported that benthic

microalgae were often controlled by factors other than nutrient

availability. It is noteworthy that none of the relationship between

the benthic microalgal production and predictors is linear. Benthic

microalgal production reached the peak at a light limitation factor

of approximately 0.85 and gradually decreased beyond

(Figure 12A). There was a positive relationship between benthic

microalgal growth and temperature limitation factor up to 0.6,

followed by a decreasing trend (Figure 12B). Limitations from other

factors and respiration acceleration are the possible causes for the

decreasing trend with temperature. The relationship between
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benthic microalgal production and nitrogen and phosphorus

limitation factors showed similarities with light and temperature

in that the benthic microalgal growth rate decreased at the high end

of the nutrient limitation factors (Figures 12C, D). The non-

linearity between benthic microalgal production and its

controlling factors reflects the complexity of coastal shallow water

dynamics and the interactions among them.
4.2 Benthic microalgal impact on high-
frequency variability in DO flux

Where present, benthic microalgae resulted in high-frequency

variability in DO fluxes. Spectral analysis of the DO flux time-series

data of the control run without benthic microalgae did not resolve

any high-frequency variability (Figure 13A). An annual cycle with

seasonal variation was the only spectral signal resolved in the control

run. In the spectral analysis of the DO flux time-series data of the

scenario run with benthic microalgae, several high-frequency signals

were resolved (Figure 13B). First, the diel signal with a 24-h period

constituted the most prominent spectrum in the time series. This was

due to benthic microalgal production during the daytime, which

produced oxygen that outgassed from the sediment to the water

column. Secondly, there was a signal of 12.4 h, which was coherent

with the M2 tide frequency. This means that there was a physical

signal in the DO flux time series. Tian et al. (2022) reported

significant tidal impact on water quality in shallow water systems,

and Kwon et al. (2014) observed tidal signals in benthic microalgal

production, which ultimately affected DO flux. Tide influences

benthic microalgal production mostly through altering

environmental conditions, such as temperature, nutrient

abundance, water depth, and light availability. Certain species can

migrate in response to the tidal phase (Mitbavkar and Anil, 2004).

The third signal had a period of 12 h, which happened twice a day.

DO flux rapidly increased from sunrise until 10:00 to 11:00 am and

then decreased more gradually to sunset, constituting the major

component of the diurnal cycle (Figure 13C). Occasionally the peak

of DO flux was split, which can be caused by interaction with physics

and tide. Unlike the daytime peak, DO flux was mostly unchanged

during the night, forming two inflection points at sunrise and sunset.

This can be part of the 12-h semidiurnal spectral signal.

GAM fitting showed that benthic microalgal production and

bottom water temperature explained 99% of the DO flux variance

(Figure 14A). Benthic microalgal production alone explained 65% of

the DO flux variance, which accounted for most of the high-

frequency variability. The relationship between DO flux and

benthic microalgal production is practically linear, with high

benthic microalgal production leading to high DO flux

(Figure 14B). However, GAM fitting showed a non-linear

relationship between DO flux and water temperature (Figure 14C).

DO flux increased with water temperature until approximately 12°C

and then decreased with increasing temperature. High temperature

explained most of the extremely low DO flux in summer.

Acceleration in mineralization and respiration are behind the

negative relationship between DO flux and temperature at the

high end.
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4.3 Resource competition between benthic
microalgae and phytoplankton in the
water column

Interactions between benthic microalgae and phytoplankton

constitute a major dynamic in coastal and estuarine shallow water

systems (Hope et al., 2020). The model revealed significant resource

competition between pelagic phytoplankton and benthic

microalgae. Phytoplankton constitute a limiting factor of light

reaching the benthic microalgae on the bottom. PAR was high

during summer, yet light availability to benthic microalgae was low

during the same period. Phytoplankton light attenuation and

absorption can considerably reduce light penetration through the

water column that sustains benthic microalgal photosynthesis.

Yamaguchi et al (2007) found a negative relationship between

chlorophyll concentration in the water column and benthic

microalgal production, and Darrow (2007) reported the shading

effect of phytoplankton on benthic microalgae. On the other hand,
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benthic microalgae constitute a competitor of phytoplankton

nutrient uptake. During the benthic microalga productive season

(e.g., April and October), phytoplankton production was

significantly reduced, due to the competition of nutrients from

benthic microalgae. Overall, nutrient availability to phytoplankton

was reduced by one-third over an annual cycle at the near-field

station. Laboratory experiments showed a similar phenomenon that

benthic microalgae significantly reduced nutrient fluxes from the

sediment (Sundback and Graneli, 1988). Field measurement also

showed that benthic microalgae sequestered nutrients from being

released to the water column during the productive season

(Webster et al., 2002).

Shallow water systems account for only approximately 7% of

the world ocean surface area but contribute up to 30% of the total

primary production (Andersson and Mackenzie, 2004). Shallow

waters (≤2 m) occupy 23.7% of the Chesapeake Bay surface area.

Being located at the land–ocean interface, shallow water systems are

the primary receiver of nutrient loads from watersheds.
B

A

FIGURE 11

Simulated benthic algal growth limitation factors of light FIB (blue), nitrogen FNB (dashed orange), phosphorus FPB (dashed green), and temperature
FTB (yellow) at the near-field station COR0056 (A) and far-field station XHH4931 (B); 1 indicates no limiting effect from a particular resource, and 0
means full limiting effect. Due to the diel cycle, light is always limiting during the night, and its limiting effect is measured by the daytime values, i.e.,
the upper bound of the blue line.
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Understanding benthic microalgal dynamics constitutes a

significant element in management decision-making for coastal

ecosystem restoration and conservation. The benthic microalga

model will be applied to the entire Chesapeake Bay and other

tributaries in the coming years. Wave-drive resuspension and

climate change can potentially exacerbate benthic algal impact,

which are not parameterized in the current microalga model and

need further investigation in future applications.
5 Conclusion

The model has reproduced the observed seasonal cycle of a variety

of physical and biogeochemical variables, including temperature,

salinity, chlorophyll, dissolved oxygen, sediment oxygen demand,

ammonium, and phosphorus fluxes at the sediment–water interface.

Benthic microalgae were predicted to grow mostly within the 2-m

isobath of bathymetry in the Corsica River, and light availability was

revealed as the predominant controlling factor in determining the

spatial scope of benthic microalgal distribution. The seasonal cycle of
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benthic microalgal production was also largely determined by light

availability, which accounted for 65% of the benthic microalgal

production variance. Non-linearity arises from interactions among

different controlling factors and between physical and

biogeochemical dynamics. Benthic microalgae have considerable

impact on DO and nutrient fluxes at the sediment–water interface

with high-frequency variability that is dominated by diel, semi-diel, and

tidal frequencies. Resource competition occurred between

phytoplankton and benthic microalgae. Phytoplankton absorption

and shading limit light availability to benthic microalgae and benthic

microalgae nutrient uptake reduce nutrient availability to

phytoplankton in the water column. However, benthic microalgae

represent a net nutrient input from the sediment to the whole system

that was not available to phytoplankton production. Benthic microalgal

impacts have cascaded through physical dynamics to the far-field

stations where phytoplankton production was reduced due to low

nutrient availability. Our study shows that benthic microalgae play a

significant role in water quality dynamics in shallow water systems,

which needs adequate attention in both observation and

modeling studies.
B

C D

A

FIGURE 12

GAM-fitted function between benthic microalgal production and growth factors of light (A), temperature (B), nitrogen (C), and phosphorus (D) at the
near-field station COR0056.
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FIGURE 13

Spectral analysis of DO flux time series predicted in the control run without benthic microalgae (A) and in the scenario run with benthic microalgae
(B) and 10-day time-series data of DO flux at the near-field station COR0056 (C).
B C

A

FIGURE 14

GAM prediction of the DO flux time series at the near-field station COR0056 (A) and fitted functions between DO flux and benthic algal production
(B) and water temperature (C). Black circles are the original data of DO flux, and the blue line is the GAM prediction.
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