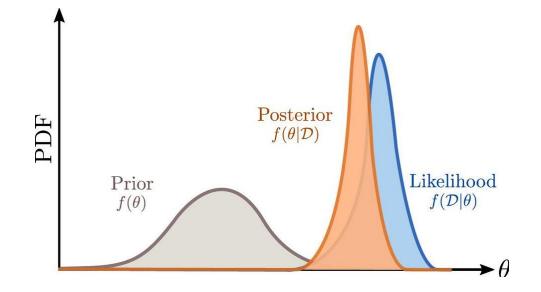
Structure and development of CalCAST – Nitrogen and Phosphorus

Isabella Bertani, Gopal Bhatt, Gary Shenk, Lewis Linker

Modeling Workgroup Quarterly Review 10/04/2022

What is CalCAST?

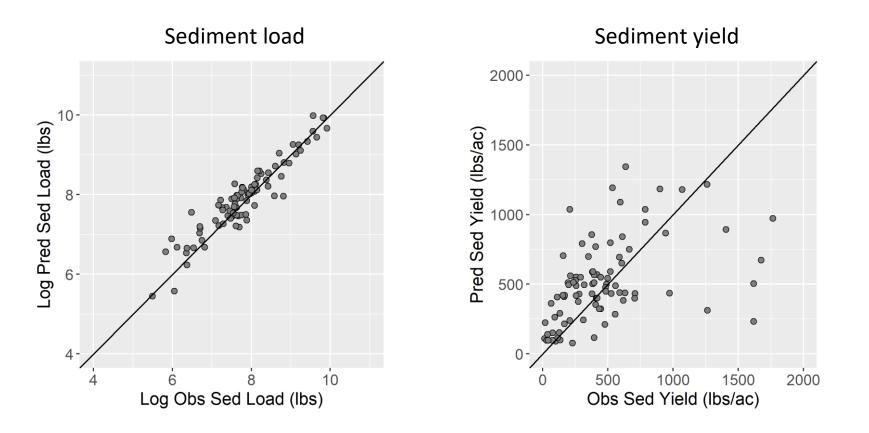

- Relatively parsimonious, spatially explicit, largely data-driven watershed modeling tool calibrated in a statistical framework
- Currently represents > 80,000 National Hydrography Dataset Plus (NHDPlus) catchments within the Bay watershed and leverages data from > 400 USGS monitoring stations for calibration
- Currently time-averaged (but may be extended to predict at the annual time step in the future)
- Currently predicts long-term average streamflow and sediment at NHDPlus catchments

Why CalCAST?

- Primarily used as spatial calibration tool
- Main purpose: probabilistically test hypotheses on factors related to spatial variation in contaminant loads and quantify parameters that describe such relationships
- Spatial parameters estimated by CalCAST will inform CAST and the dynamic model
- Incorporate data-driven line of evidence into modeling approach

Plan for this year

- Implement Bayesian calibration framework
- Get the code infrastructure up and running
- Get "on the graph" results for hydrology, sediment, and nutrients



Hydrology – Observed vs. Predicted

Total Flow Stormflow/Total Flow 1.00-40-Pred Stormflow/TotalFlow 0.22-0.22-Pred Water Yield (in) % Carb 100 75 50 25 0 0.00-0-10 40 20 30 0 0.00 0.25 0.50 1.00 0.75 Obs Water Yield (in) **Obs Stormflow/TotalFlow**

«On the graph»

Sediment – Observed vs. Predicted

Definitely not great, but «On the graph»

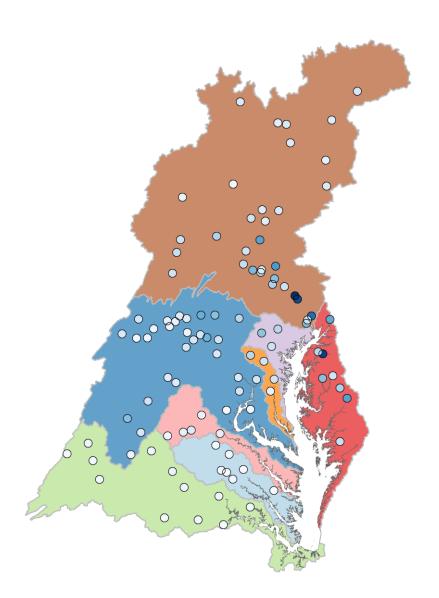
Nitrogen

Calibration stations - TN

Major Basin

James

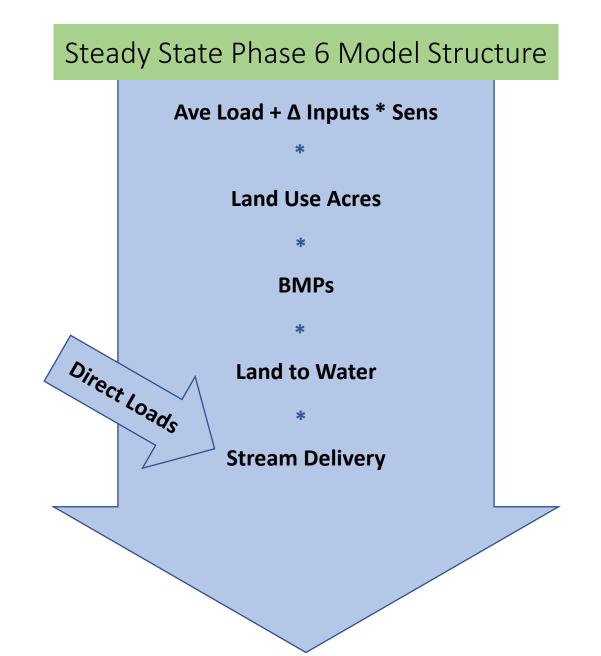
York


TN Yield (lbs/ac) 30 20 10

Patuxent Potomac

Eastern Shore

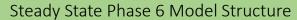
Rappahannock

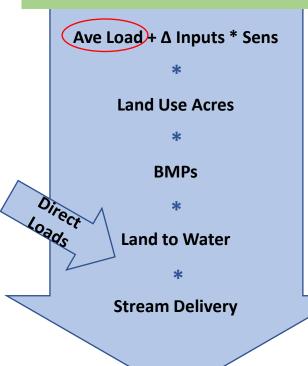

Susquehanna Western Shore

• Calibration target:

WRTDS flow-normalized total nitrogen load estimated at non-tidal network stations

Implementing P6 at NHDPlus scale in CalCAST




Watershed-wide average land use loading rates

• 11 CalCAST land uses grouped into 4 broad classes. Each class has an «anchor land use» (in bold):

Land Class	Land uses in Class
Cropland	CRP
Pasture	PAS
Developed	IR, INR, TCI, TCT, TG
Natural	FOR, MO, WLF, WLO

INR: Impervious Non-Roads IR = Impervious Roads TCI = Tree Canopy over Impervious TCT = Tree Canopy over Turfgrass TG = Turfgrass FOR = Forest MO = Mixed Open WLF = Floodplain Wetlands WLO = Other Wetlands

Watershed-wide average land use loading rates

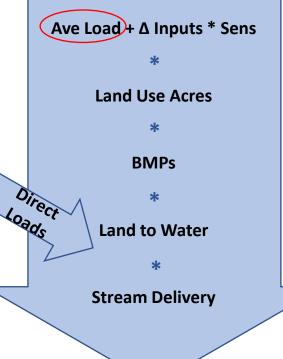
11 CalCAST land uses grouped into 4 broad classes. Each class has an «anchor land use» (in bold):

Land Class	Land uses in Class
Cropland	CRP
Pasture	PAS
Developed	IR, INR, TCI, TCT, TG
Natural	FOR, MO, WLF, WLO

• Each land use's watershed-wide average loading rate (lbs/ac) estimated as:

 $Ave_l = CLR \times RC_{cl_1} \times RL_l$

CLR = Loading rate of Cropland class. Set to **38 lbs/ac** for now for TN and **1.87 lbs/ac** for TP (P6 estimates), can be estimated by CalCAST if desired.


RC_{cl} = Ratio of average loading rate of land class *cl* to Cropland loading rate. Estimated by CalCAST, with priors centered around P6 values, e.g.:

```
RCpas ~ Normal(0.29,1)
```

RL_I = Ratio of average loading rate of land use *I* in class *cI* to loading rate of anchor land use in class *cI*. Estimated by CalCAST, with priors centered around P6 values, e.g.:

INR: Impervious Non-Roads
IR = Impervious Roads
TCI = Tree Canopy over Impervious
TCT = Tree Canopy over Turfgrass
TG = Turfgrass
FOR = Forest
MO = Mixed Open
WLF = Floodplain Wetlands
WLO = Other Wetlands

Steady State Phase 6 Model Structure

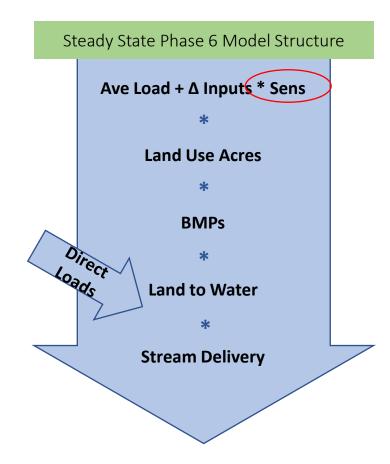
Inputs - TN

The following P6 inputs were downscaled from CAST county scale and land uses to NHDPlus catchment scale and CalCAST land uses (thank you **Jess Rigelman** and **Olivia Devereux**!):

Atmospheric Deposition (on land and water bodies*) **Biosolids** Steady State Phase 6 Model Structure Crop Cover Fertilizer Ave Load $\pounds \Delta$ Inputs $\frac{1}{2}$ Sens Manure Riparian Pasture Deposition* Nitrogen fixation Land Use Acres **Rapid Infiltration Basins*** * Septic* **BMPs** Plant Uptake Direct Feeding Space* Loads Land to Water Wastewater* CSO* **Stream Delivery** * Treated as direct loads For details on downscaling methods, ask questions or see: https://www.sciencebase.gov/catalog/item/60be31b3d34e86b938910b2f 12

Sensitivities

Sensitivity: change in edge-of-stream load per change in unit of input


For now, sensitivities are set to P6 values rather than estimated in CalCAST. We can let CalCAST estimate sensitivities in the future, e.g., as follows:

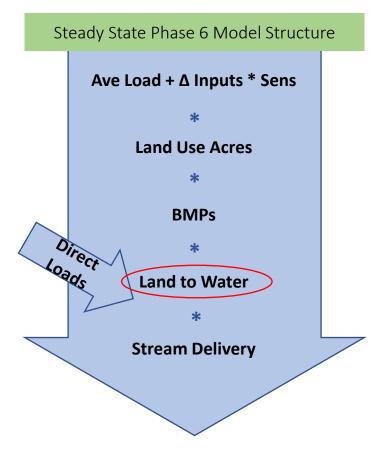
 $\text{Sen}s_{i,l} = \text{Sen}s_{i,cl_l} \times RL_l$

Sens_{i.1} = Sensitivity to input *i* on land use *l*

Sens_{i,cl} = Sensitivity to input *i* on anchor land use in class *cl*

RL_I = Ratio of average loading rate of land use / in class *cl* relative to loading rate of anchor land use in class *cl*

Land to Water - TN


For now, same Land To Water structure as in P6, based on SPARROW variables and coefficients. Other variables/watershed properties will be tested in CalCAST next year.

Variable	Estimate	90% Confidence Interval	Standard Error	P-value
	Sou	irces		
Point sources (kg yr ⁻¹)	0.774	0.375 - 1.17	0.242	0.0008
Crop fertilizer and fixation (kg yr ⁻¹)	0.237	0.177 – 0.297	0.0363	< 0.0001
Manure (kg yr-1)	0.0582	0.0138 - 0.103	0.0269	0.0157
Atmospheric deposition (kg yr ⁻¹)	0.267	0.179 - 0.355	0.0533	< 0.0001
Urban2 (km²)	1090	707 – 1480	234	< 0.0001
	Land-to-Wa	ater Delivery		
In[Mean EVI for WY02 (dimensionless)]	-1.7	-2.65 – -0.737	0.58	0.0039
In[Mean soil AWC (fraction)]	-0.829	-1.260.401	0.26	0.0016
In[Groundwater recharge (mm)]	0.707	0.499 – 0.916	0.126	< 0.0001
In[Piedmont carbonate (percent of area)]	0.158	0.0755 – 0.241	0.05	0.0018

Table 7-2: Estimated Coefficients and Statistics from SPARROW Nitrogen Model of the Chesapeake Bay Watershed, Version 4

$$DVF_c = e^{(0.707 * gwrech_c - 0.829 * awc_c + 0.158 * pca_c)}$$

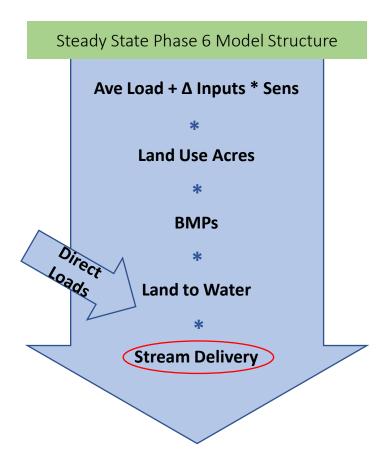
 DVF_c = Delivery Variance Factor for catchment c gwrech_c = groundwater recharge for catchment c awc_c = soil available water capacity for catchment c pca_c = % of catchment c in Piedmont carbonate

Stream Delivery - TN

For now, same Stream Delivery structure as in P6, based on SPARROW variables and coefficients. Other model formulations can be tested in CalCAST next year.

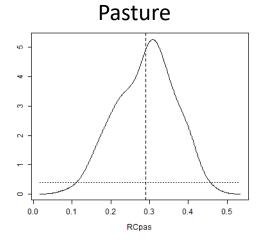
Variable	Estimate	90% Confidence Interval		Standard Error	P-value
	Sou	urces			1
Point sources (kg yr ⁻¹)	0.774	0.375 - 1.17		0.242	0.0008
Crop fertilizer and fixation (kg yr ⁻¹)	0.237	0.177 – 0.297		0.0363	< 0.0001
Manure (kg yr ⁻¹)	0.0582	0.0138 - 0.103		0.0269	0.0157
Atmospheric deposition (kg yr ⁻¹)	0.267	0.179 - 0.355		0.0533	< 0.0001
Urban2 (km²)	1090	707 – 1480		234	< 0.0001
	Land-to-W	ater Delivery			
In[Mean EVI for WY02 (dimensionless)]	-1.7	-2.650.737		0.58	0.0039
In[Mean soil AWC (fraction)]	-0.829	-1.260.401		0.26	0.0016
ln[Groundwater recharge (mm)]	0.707	0.499 - 0.916		0.126	< 0.0001
infriedmont carbonate (percent of area)]	0.138	0.0755 - 0.241		0.05	0.0018
Aquatic Decay					
Impoundments					
Inverse hydraulic load (yr m ⁻¹)	5.93	0.271 - 11.6		3.42	0.0424
Streams, time of travel (d) MAQ =mean ar	nual flow; T	130 = 30 year mean	maximu	m temperature	1
Small (MAQ ≤ 3.45 m ³ s ⁻¹)	0.339	0.0936 - 0.585		0.148	0.0118
Large (MAQ > 3.45 m ³ s ⁻¹) T30 > 18.5°C	0.153	0.0622 - 0.245		0.0551	0.003
Large (MAQ > 3.45 m³ s⁻¹) T30 ≤ 15°C	0.0131	-0.111 - 0.137		0.0751	0.431

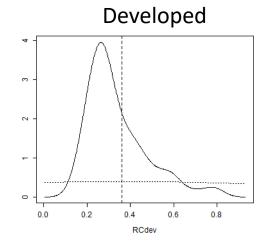
Table 7-2: Estimated Coefficients and Statistics from SPARROW Nitrogen Model of the Chesapeake Bay Watershed, Version 4


Reservoirs:

$$Del_c = \frac{1}{1 + bres * IHL_c}$$

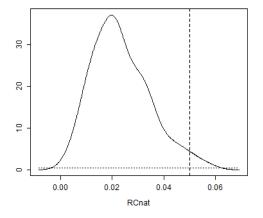
Streams:


$$Del_c = e^{-bstr * TT_c}$$


 Del_c = Stream/Reservoir delivery factor for catchment c IHL_c = Inverse Areal Hydraulic Load for reservoir in catchment c TT_c = Time of Travel for stream reach in catchment c bres= estimated through CalCAST bstr = P6 values

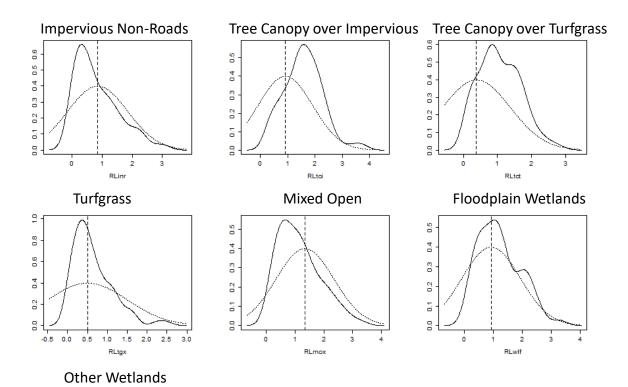
Total Nitrogen – RC estimates

 $Ave_l = CLR \times \frac{RC_{cl_l}}{R} \times RL_l$



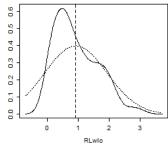
Solid lines: posterior probability distributions estimating RC_{cl}

Dotted lines: prior probability distributions


Dashed vertical lines: P6 value

Natural

Total Nitrogen – RL estimates


$Ave_l = CLR \times RC_{cl_l} \times RL_l$

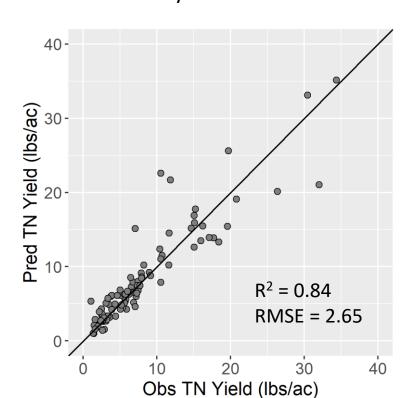
Solid lines: posterior probability distributions estimating RL_I

Dotted lines: prior probability distributions

Dashed vertical lines: P6 value

Total Nitrogen – Observed vs. Predicted

TN load


6

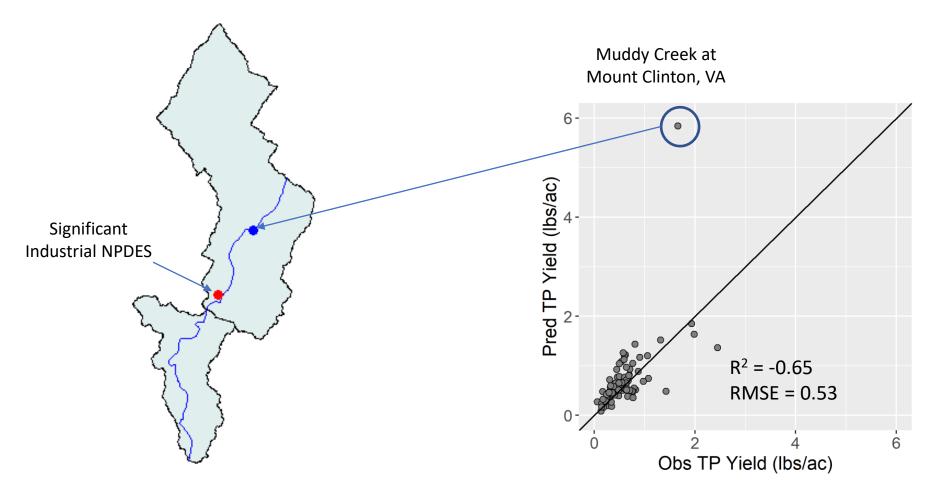
Log Obs TN Load (lbs)

4

8

Log Pred TN Load (lbs)

TN yield

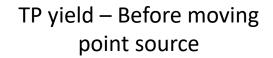

«On the graph»

Total Phosphorus – Observed vs. Predicted

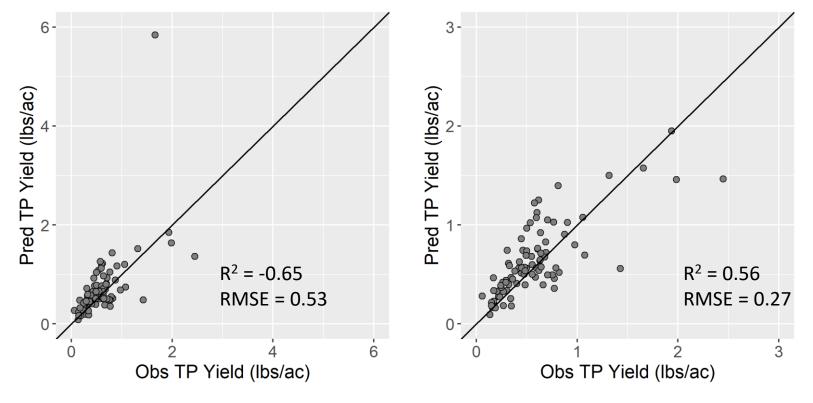
TP load TP yield 6-8-Log Pred TP Load (lbs) Pred TP Yield (lbs/ac) $R^2 = -0.65$ RMSE = 0.53 2-2 6 6 8 2 Δ Obs TP Yield (lbs/ac) Log Obs TP Load (lbs)

*For details on model formulation, ask questions or see Extra Slides

Total Phosphorus – Observed vs. Predicted



In this case, the calibration station is upstream of a point source that falls within that station's catchment



Moved NPDES to immediately downstream catchment in the model

Total Phosphorus – Observed vs. Predicted

TP yield – After moving point source

Next steps

- Code checking/de-bugging
- Annual CalCAST
- Refine/improve hydrology, sediment, and nutrient CalCAST

Extra Slides

Phosphorus

Calibration stations - TP

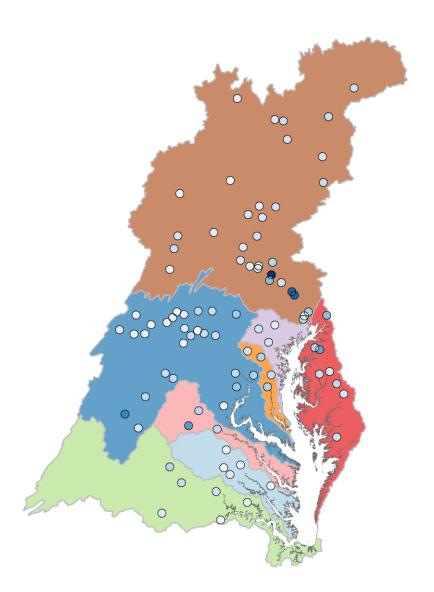
Major Basin

James

Patuxent

Potomac

York


TP Yield (lbs/ac) 2.0 1.5 1.0

0.5

Eastern Shore

Rappahannock

Susquehanna Western Shore

• Calibration target:

WRTDS flow-normalized total phosphorus load estimated at non-tidal network stations

25

Inputs - TP

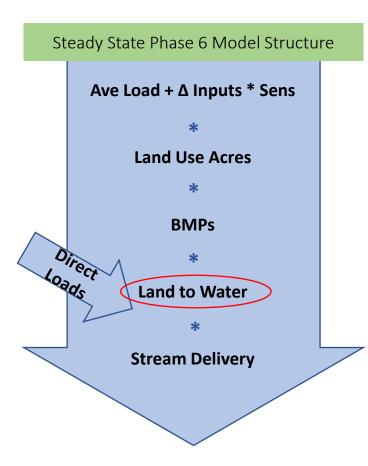
The following P6 inputs were downscaled from CAST county scale and land uses to NHDPlus catchment scale and CalCAST land uses (thank you <u>Jess Rigelman</u> and <u>Olivia Devereux</u>!):

Atmospheric Deposition (on water bodies*) Soil P (not included yet) Water Extractable P Sediment loss (EOF from Sediment-CalCAST) Stormflow (from Stormflow-CalCAST) Riparian Pasture Deposition* Rapid Infiltration Basins* Feeding Space* Wastewater* CSO*

* Treated as direct loads

For details on downscaling methods, ask questions or see: https://www.sciencebase.gov/catalog/item/60be31b3d34e86b938910b2f

Land to Water - TP


For now, same Land To Water structure as in P6, based on SPARROW variables and coefficients. Other variables/watershed properties will be tested in CalCAST next year.

Variable	Estimate	90% Confidence	Standard	P-value
		Interval	Error	
	Sourc	ces		
Point sources (kg yr ⁻¹)	0.877	0.573 - 1.18	0.183	<
				0.0001
Crop fertilizer (kg yr-1)	0.0377	0.0171 - 0.0583	0.0125	0.0014
Manure (kg yr ⁻¹)	0.0253	0.0144 - 0.0362	0.00658	0.0002
Siliciclastic rocks (km ²)	8.52	6.10 - 10.9	1.46	<
				0.0001
Crystalline rocks (km²)	6.75	3.25 - 10.2	2.12	0.0009
Urban2 (km²)	49	30.4 - 67.7	11.3	<
				0.0001
La	nd-to-Wate	er Delivery		
Soil erodibility (K factor)	6.25	3.55 - 8.95	1.63	0.0002
In[Well-drained soils (percent)]	-0.1	-0.1530.0478	0.0317	0.0019
Coastal Plain (percent of area)	1.02	0.681 - 1.35	0.204	<
				0.0001
In[Precipitation3 (mm)]	2.06	0.567 - 3.55	0.903	0.0237
	Aquatic I	Decay		
Impoundments- inverse hydraulic load (yr m ⁻	54.3	12.1 - 96.5	25.5	0.0174

Table 7-3: Estimated Coefficients and Statistics from SPARROW Phosphorus Model of the Chesapeake Bay Watershed, Version 4

$$DVF_c = e^{(-0.1*hga_c)}$$

 DVF_c = Delivery Variance Factor for catchment c hga_c = % of catchment in hydrologic soil group A

Stream Delivery - TP

For now, same Stream Delivery structure as in P6, based on SPARROW variables and coefficients. Other model formulations can be tested in CalCAST next year.

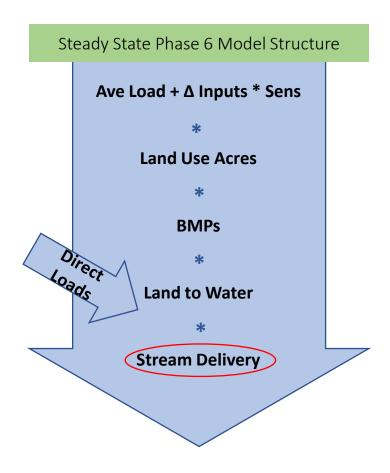

Estimate	90% Confidence Interval	Standard Error	P-value
Sourc	ces		
0.877	0.573 - 1.18	0.183	<
			0.0001
0.0377	0.0171 - 0.0583	0.0125	0.0014
0.0253	0.0144 - 0.0362	0.00658	0.0002
8.52	6.10 - 10.9	1.46	<
			0.0001
6.75	3.25 - 10.2	2.12	0.0009
49	30.4 - 67.7	11.3	<
			0.0001
and-to-Wate	er Delivery		
6.25	3.55 - 8.95	1.63	0.0002
-0.1	-0.1530.0478	0.0317	0.0019
1.02	0.681 - 1.35	0.204	<
			0.0001
2.06	0.567 - 3.55	0.903	0.0237
Aquatic	Decay	·	
54.3	12.1-96.5	25.5	0.0174
	Source 0.877 0.0377 0.0253 8.52 6.75 49 and-to-Wate 6.25 -0.1 1.02 2.06 Aquatic	Interval Sources 0.877 0.573 – 1.18 0.0377 0.0171 – 0.0583 0.0253 0.0144 – 0.0362 8.52 6.10 – 10.9 6.75 3.25 – 10.2 49 30.4 – 67.7 and-to-Water Delivery 6.25 -0.1 -0.153 – -0.0478 1.02 0.681 – 1.35 2.06 0.567 – 3.55 Aquatic Decay	Interval Error Sources 0.877 0.573 – 1.18 0.183 0.0377 0.0171 – 0.0583 0.0125 0.0253 0.0144 – 0.0362 0.00658 8.52 6.10 – 10.9 1.46 6.75 3.25 – 10.2 2.12 49 30.4 – 67.7 11.3 and-to-Water Delivery 6.25 3.55 – 8.95 1.63 -0.1 -0.153 – -0.0478 0.0317 1.02 1.02 0.661 – 1.35 0.204 2.06 2.06 0.567 – 3.55 0.903 Aquatic Decay

Table 7-3: Estimated Coefficients and Statistics from SPARROW Phosphorus Model of the Chesapeake Bay Watershed, Version 4

Reservoirs:

$$Del_c = \frac{1}{1 + bres * IHL_c}$$

 Del_c = Stream/Reservoir delivery factor for catchment c IHL_c = Inverse Areal Hydraulic Load for reservoir in catchment c bres= estimated through CalCAST

