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Seasonal forecasts of Chesapeake Bay hypoxia
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University of Michigan Chesapeake Bay hypoxia
forecasting model

Biological Oxygen (BOD):
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t: time (d)
x: distance from source of BOD (km)

a: BOD decomposition rate (d?)
b: DO re-aeration rate (d1)
v: downstream advection (km d1)



University of Michigan Chesapeake Bay hypoxia

Depth (m)

Model driver:
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TN - C through Redfield Ratio (5.67 gC/gN)
F: fraction of C assumed to settle below the pycnocline

C - BOD through respiration ratio (2.4 gO,/gC)



University of Michigan Chesapeake Bay hypoxia
forecasting model

Driver: Calibration target:
Jan-May average ‘ Mean July hypoxic volume (HV)
Susquehanna TN load ([DO] < 2 mg/L)
1 V-L relationship
Model output: _ 4
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Hypoxic length = sum
of all segments with
[DO] < 2 mg/L

‘ Hypoxic length - hypoxic volume
through empirical V-L relationship



University of Michigan Chesapeake Bay hypoxia

Hypoxic volume {km?)

forecasting model

Seasonal forecast

The 2019 Forecast - Given the average Januarv-May 2019 total
nitrogen load of 309,403 kg/day, this summer’s hypoxia volume
forecast is 8.9 km”, the 4™ largest in the past 20 vears.
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The average 2019
forecast is 8.9 km°.

There 1s a 95%
probability that
hypoxic volume
will be between 7.5
and 10.2 km’.
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University of Michigan Chesapeake Bay hypoxia
forecasting model

Forecasting track record
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Atypical weather in 2007 and 2014
observed m®model 2007 and 2008 error bars are 67% Cls
2009 onward are 95% Cls
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Lessons learned from model track record and other
analyses

Average July HV somewhat “arbitrary” metric and highly sensitive to
transitory weather disruptions
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Lessons learned from model track record and other
analyses

Multiple estimates of HV now available, both from observations and 3D
models — Opportunity to incorporate multiple sources of information
during Bayesian calibration
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Lessons learned from model track record and other
analyses

Preliminary analyses from CHAMP group suggest that loading periods
other than Jan-May might be relevant to total annual hypoxia

| Correlation of Aggregated Precipitation HV Estimate
to Estimates of Annual Hypoxic Volume & P6 WSM HV
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Lessons learned from model track record and other
analyses

Susquehanna works as a reasonable proxy for total load, but including
other sources may improve model performance

|Geobasin| N | P | Total |

JmsA | 0.9% 0.4% 1.3%

PotA | 16.3% 1.9% 18.2%

. . . PxtA | 0.5% 0.1% 0.6%

Relative contribution* of 09%  02%  11%

_ _ SR 45.0% 4.4% 49.4%

different geobasins to 03%  01%  0.4%

] ] 3.3% 0.5% 3.8%

hypoxia as estimated by the T 8% 0.6%  24%

EshUpp | 2.2% 0.5% 2.7%

CBP model 0.8% 0.1% 0.9%

ImsB | 1.3% 0.3% 1.6%

6.7% 1.1% 7.8%

pxtB | 0.9% 0.2% 1.1%

1.2% 0.2% 1.3%

* Wsh | 5.4% 1.2% 6.5%

Basefj on the effect of N an.d P loads from each 0.6% 0.1% 0.7%
basin on the 25th percentile of summer DO C

concentrations below the surface mixed layer 88.1% 11.9%  100.0%



Planned short-term revisions to the University of
Michigan Chesapeake Bay hypoxia forecasting
model — before 2020 forecast

Re-calibrate model to different sets of HV estimates, HV metrics, loading
periods and load sources

HV estimates:
 HV estimated through interpolation of cruise data
e Simulated HV from 3D models (e.g., VIMS, UMCES)

HV metrics: average July, average summer, total annual, monthly

Load sources: consider major load sources other than Susquehanna
(e.g., Potomac, Rappahannock, cumulative point sources)

Compare model skill and track record (e.g. through blind forecasting) and
uncertainty across different calibration versions



Application to Gulf Hypoxia

B=BOD D = Dissolved Oxygen
Mississippi o Atchafalaya
Load "'Npp Diffusion Load ~N
Pycnocline
I

Advection

Organic matter decay



Hypoxic area (km?)

University of Michigan Gulf of Mexico hypoxia

forecasting model

Forecasting track record
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University of Michigan Gulf of Mexico hypoxia

forecasting model

Management application — Ensemble of four models

Hypoxic Area (1000 km )
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Scavia et al. 2017



Planned short-term revisions to the University of
Michigan Chesapeake Bay hypoxia forecasting
model — before 2020 forecast

Thank You

Feedback and suggestions from the CHAMP
group welcome!

Isabella Bertani: ibertani@chesapeakebay.net
Don Scavia: scavia@umich.edu
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