Seasonal forecasts of Chesapeake Bay hypoxia

Scientific, Technical Assessment and Reporting
(STAR) Meeting
November 21, 2019

Isabella Bertani¹ & Don Scavia²

¹ University of Maryland Center for Environmental Science ² University of Michigan

Seasonal forecasts of Chesapeake Bay hypoxia

Near-record dead zones forecast for Chesapeake Bay, Gulf of Mexico

Streeter-Phelps Model

Biological Oxygen (BOD): Demand

$$\frac{dBOD}{dt} = -v * \frac{dBOD}{dx} - a * BOD$$

Dissolved Oxygen (DO):

$$\frac{dDO}{dt} = -v * \frac{dDO}{dx} + a * BOD - b * DO$$

t: time (d)

x: distance from source of BOD (km)

a: BOD decomposition rate (d⁻¹)

b: DO re-aeration rate (d⁻¹)

v: downstream advection (km d⁻¹)

Model driver: Jan-May average TN load from Susquehanna at Conowingo ■

TN \rightarrow **C** through Redfield Ratio (5.67 gC/gN)

F: fraction of C assumed to settle below the pycnocline

 $C \rightarrow BOD$ through respiration ratio (2.4 gO₂/gC)

Driver:

Jan-May average Susquehanna TN load

Calibration target:

Mean July hypoxic volume (HV) ([DO] < 2 mg/L)

Model output:

Average subpycnocline [DO] as a function of distance from TN source

Hypoxic length = sum of all segments with [DO] < 2 mg/L

Hypoxic length → hypoxic volume through empirical V-L relationship

Seasonal forecast

The 2019 Forecast - Given the average January-May 2019 total nitrogen load of 309,403 kg/day, this summer's hypoxia volume forecast is 8.9 km³, the 4th largest in the past 20 years.

Forecasting track record

Average July HV somewhat "arbitrary" metric and highly sensitive to transitory weather disruptions

Multiple estimates of HV now available, both from observations and 3D models – Opportunity to incorporate multiple sources of information during Bayesian calibration

Preliminary analyses from CHAMP group suggest that loading periods other than Jan-May might be relevant to total annual hypoxia

Susquehanna works as a reasonable proxy for total load, but including other sources may improve model performance

Relative contribution* of different geobasins to hypoxia as estimated by the CBP model

Geobasin	N	Р	Total
JmsA	0.9%	0.4%	1.3%
PotA	16.3%	1.9%	18.2%
PxtA	0.5%	0.1%	0.6%
RapA	0.9%	0.2%	1.1%
Susq	45.0%	4.4%	49.4%
YrkA	0.3%	0.1%	0.4%
EshLow	3.3%	0.5%	3.8%
EshMid	1.8%	0.6%	2.4%
EshUpp	2.2%	0.5%	2.7%
EshVA	0.8%	0.1%	0.9%
JmsB	1.3%	0.3%	1.6%
PotB	6.7%	1.1%	7.8%
PxtB	0.9%	0.2%	1.1%
RapB	1.2%	0.2%	1.3%
Wsh	5.4%	1.2%	6.5%
YrkB	0.6%	0.1%	0.7%
Total	88.1%	11.9%	100.0%

^{*}Based on the effect of N and P loads from each basin on the 25th percentile of summer DO concentrations below the surface mixed layer

Planned short-term revisions to the University of Michigan Chesapeake Bay hypoxia forecasting model – before 2020 forecast

Re-calibrate model to different sets of HV estimates, HV metrics, loading periods and load sources

HV estimates:

- HV estimated through interpolation of cruise data
- Simulated HV from 3D models (e.g., VIMS, UMCES)

HV metrics: average July, average summer, total annual, monthly

Load sources: consider major load sources other than Susquehanna (e.g., Potomac, Rappahannock, cumulative point sources)

Compare model skill and track record (e.g. through blind forecasting) and uncertainty across different calibration versions

Application to Gulf Hypoxia

University of Michigan Gulf of Mexico hypoxia forecasting model

Forecasting track record

University of Michigan Gulf of Mexico hypoxia forecasting model

Management application – Ensemble of four models

