

GENERAL PRINCIPALS OF BAY HYPOXIA

THINGS THAT CONTROL TRIBUTARY NITOGEN FLUX IN ANY GIVEN YEAR

SPRING FLUX ESTIMATION: THE PRESENT

WRTDS MODEL

- LOCALLY WEIGHTED ON TIME DISCHARGE AND SEASON
- CALIBRATION ON RECENT OBSERVATIONS (APRIL)
- PREDICT DAILY TIME SERIES
- 1-DAY PRODUCTION TIME

ADVANTAGES

- IMPROVED ACCURACY
- TAKES ADVANTAGE OF RECENT SAMPLE DATA
- IMPROVED AUTOMATION
- QUICKER TURN AROUND

ANNUAL PRODUCTS SPRING NITROGEN LOAD (JAN-MAY) SUSQUEHANNA RIVER AT CONOWINGO, MD Median= 77.3 NITROGEN LOAD, IN MILLION POUNDS 1990 2000 2010 YEAR SPRING NITROGEN LOAD (JAN-MAY) POTOMAC RIVER AT CHAIN BRIDGE, AT WASHINGTON, DC NITROGEN LOAD, IN MILLION Median= 28.6 1990 2000 2010 YEAR

SPRING FLUX ESTIMATION: THE FUTURE

- DIRECT MEASUREMENT OF NITRATE FLUX:
 - SUSQUEHANNA 2014-PRESENT
 - POTOMAC 2012-PRESENT
- SURROGATE MODEL FOR TOTAL NITROGEN
 - TURBIDITY AND FLOW
- WRTDS HISTORICAL AND GAP FILLING
- ADVANTAGES
 - MUCH IMPROVED ACCURACY
 - HIGH RESOLUTION
 - IMMEDIATE AVAILABILITY (EVENTUALLY)
 - SOLVES UNCERTAINTY RELATED TO STORM TRACK

