THE COMPETING IMPACTS OF CLIMATE CHANGE AND NUTRIENT REDUCTION ON DISSOLVED OXYGEN IN CHESAPEAKE BAY

Ike Irby

CHAMP Meeting August 2017

2050 Relative to 1993-1995

Temperature

Sea Level Rise

Precipitation

Impact of TMDL is greater than impact of climate change

Temperature is the biggest driver of climate change impact

A TMDL wet year looks like a current dry year

With impacts of climate change, hypoxic conditions will start ~7 days earlier

Large interannual variability

Large interannual variability

• TMDL wet looks like Current dry

Large interannual variability

• TMDL wet looks like Current dry

Large interannual variability

TMDL wet looks like Current dry

Biggest impact due to climate change is at the periphery of low-DO waters

TMDL > Climate Change

Temp > Sea Level Rise & Precipitation

+7 Days Longer

Impact along periphery

Limitations & Future Directions

- Comparison with CBP
 - Temperature differences
 - SLR differences

Phytoplankton growth:

- CBP: Peak growth (multiple classes)
- VIMS: Exponential growth (one class)

Limitations & Future Directions

- Comparison with CBP
 - Temperature differences
 - SLR differences

Difference in average salinity after 0.5m SLR

Wet Year

ChesROMS-ECB

7/7/17 STAC WQSTM Review Presentation: change in PSU with 0.4 PSU increase at boundary

- Comparison with CBP
 - Temperature differences
 - SLR differences
- Single watershed & estuarine models

- Comparison with CBP
 - Temperature differences
 - SLR differences
- Single watershed & estuarine models
- Sensitivity tests

- Comparison with CBP
 - Temperature differences
 - SLR differences
- Single watershed & estuarine models
- Sensitivity tests
- Contemporaneous nutrient reduction & climate change

- Comparison with CBP
 - Temperature differences
 - SLR differences
- Single watershed & estuarine models
- Sensitivity tests
- Contemporaneous nutrient reduction & climate change
- Assessment of water quality standards

TMDL > Climate Change

Temp > Sea Level Rise & Precipitation

+7 Days Longer

Impact along periphery

FUTURE COMPARISONS OF WATER QUALITY STANDARD ATTAINMENT

Ike Irby

Habitat	Dissolved Oxygen Rules	Rationale	Timeframe
Open Water	30-day mean ≥ 5.0 mg/L (tidal habitats with salinity ≥ 0.5 PSU)	Protects growth of larval, juvenile, and adult fish and shellfish as well as threatened/endangered species	All year round
	Instantaneous minimum ≥ 3.2 mg/L	Protects survival of threatened/endangered sturgeon species	
Deep Water	30-day mean ≥ 3.0 mg/L	Protects survival and recruitment of Bay anchovy eggs and larvae	June 1 – September 30
	Instantaneous minimum ≥ 1.7 mg/L	Protects survival of Bay anchovy eggs and larvae	
Deep	Instantaneous minimum ≥ 1.0	Protects survival of bottom-dwelling	June 1 – September
Channel	Non-Summer: October - May	Summer: June - Septembe	30 er
	Open Water		Water ater

Are dissolved oxygen standards attained with nutrient reduction?

Confidence Index

- Across habitats
 - How similar are the model results for open water, deep water, and deep trench?
- Across years
 - How similar are the model results for 1993, 1994, 1995?
- Across methodology
 - How similar are the intermediate results of the models?

• Traditional TMDL Water Quality Standard Attainment

Traditional TMDL Water Quality
Standard Attainment

Long-term model-data hindcast & model forecast

• Traditional TMDL Water Quality Standard Attainment

Long-term model-data hindcast & model forecast

 Chesapeake Stat/Chesapeake Progress & ECOhealth Report Card... & others?

ME HEALTH INDICATORS REGIONS ISSUES PL

How healthy is your Chesapeake Bay?

Status of Nitrogen Loads	Status of Phosphorus Loads		Status of Sediment Loads	
Monitoring Station		Long-Term Trend (1985-2015)		Ten-Year Trend (2006-2015)
Susquehanna River (Conowingo, MD)		Ø		0
Potomac River (Washington, DC)		0		Ø
James River (Cartersville, VA)		Ø		Ø
Rappahannock River (Fredericksburg,	VA)	0		0

Traditional TMDL Water Quality
Standard Attainment

Long-term model-data hindcast & model forecast

· Chesapeake Stat/Chesapeake Progress & ECOhealth Report Card... & others?

CONCLUSIONS

A Multiple Model Assessment

- Analyzing multiple models can allow us to garner more information than can be gained from any single model

Analysis of Confidence

be

- Generally high confidence in the eventual impact of pollution reduction on dissolved oxygen

Evaluation of Climate Change Impacts

- Impact of TMDL pollution reduction is greater than the projected impact of 2050 climate change... but that does not mean that climate change can ignored

CONCLUSIONS

A Multiple Model Assessment

- Analyzing multiple models can allow us to garner more information than can be gained from any single model

Analysis of Confidence

be

- Generally high confidence in the eventual impact of pollution reduction on dissolved oxygen

Evaluation of Climate Change Impacts

- Impact of TMDL pollution reduction is greater than the projected impact of 2050 climate change... but that does not mean that climate change can ignored

CHAMP: Chesapeake Hypoxia Analysis and Modeling Program

- Predict the impacts of future climate change and pollution on hypoxia
- Predict the future effectiveness of various pollution reduction scenarios on reducing hypoxia

NOAA

CHAMP: Chesapeake Hypoxia Analysis and Modeling Program

- Predict the impacts of future climate change and pollution on hypoxia
- Predict the future effectiveness of various pollution reduction scenarios on reducing hypoxia

NOAA

CHAMP: Chesapeake Hypoxia Analysis and Modeling Program

- Predict the impacts of future climate change and pollution on hypoxia
- Predict the future effectiveness of various pollution reduction scenarios on reducing hypoxia

NOAA

CHAMP: Chesapeake Hypoxia Analysis and Modeling Program

- Predict the impacts of future climate change and pollution on hypoxia
- Predict the future effectiveness of various pollution reduction scenarios on reducing hypoxia

DOAA

5 days out

3 days out

 Model mean is better than any individual model across a suite of variables

 In terms of DO, the simple biology models are just as good as the complex models

Modeled MLD

Observed MLD

 Models are deficient in their ability to simulate the impact of hypoxia on spatial habitat

SLR Comparison ChesROMS-ECB vs Hong & Shen, 2012

Difference in average June salinity after 0.5m SLR

Wet Year

ChesROMS-ECB

Dry Year

ChesROMS-ECB

Hong & Shen 2012

Difference in average salinity after 0.5m SLR

Wet Year

Wang et al., 2017: Aug

Note: scale difference

Difference in average salinity after 0.5m SLR

Limitations & Future Directions

Difference in average salinity after 0.5m SLR

Wet Year

- Comparison with CBP
 - Temperature differences
 - SLR differences

7/7/17 STAC WQSTM Review Presentation: change in PSU with 0.4 PSU increase at boundary

