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Hg monitoring is complicated by biogeochemical and ecological
processes
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Monitoring considerations




*these goals are not mutually exclusive, but each
imparts its own uniqgue data needs

Common Monitoring
Objectives

* Inform health risks (human or
wildlife)

* |dentify sources A
* Track temporal changes

* Assess response to
mitigation/disturbance

* Understand processes; identify
potential mitigation actions

e Support model development
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Selection

e Human or wildlife health

e Hg varies by trophic position and habitat
* Diet plasticity

01 02 03 04
Fish Total Mercury Concentration (ug/g ww)

* Temporal variability and age/size
e Tissue turnover times

 Site fidelity and migration
e Tissue Hg represents integrated
dietary Hg over time

 Abundance and distribution

Multi- or single species
« Commonly co-occur

* Variable temporal and spatial
trends




Fish size

Available size range
e Overlap across sites

Single target size range
* Reduce variation
* Limited spatial coverage?

Fixed range of sizes
* Maximize comparability

Largest individuals
* Human health nexus

Unspecified

Fish THg (ppm dw)
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Estimating Risk — “raw estimates”
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Risk — Accounting for Size: How its done

Size — Mercury Relationship
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Risk — Accounting for Size: How its done

Model Fish at Smallest Size Observed
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Log-transformed total mercury
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Risk — Accounting for Size: How its done

Repeat at Intervals up to Largest Size Observed
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Size-specific risk example

Line indicates estimated percent of fish
exceeding low (green), medium
(orange), or high (red) benchmarks at

k%) (@) given fish size
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Size-specific risk example
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Composite vs individual
and rep||cat|on A common issue when patching

together disparate monitoring data is
inadequate sample size and replication
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Low cost * Lower cost  Moderate cost e Higher cost
Estimate mean * Estimate mean * Estimate mean * Estimate mean
No variance * Pseudo variance * Higher variance * Lower variance

No size adjustment * Poor size adjustment * Poor size adjustment e Best size adjustment



Skinless muscle Whole body Skin-on fillet

 Human consumption nexus * Wildlife health nexus * More common for
* Reduced variability * Higher variability other contaminants

Tissue type




Model-Based

Site selection and
sampling design

e Stratified across habitats
and watersheds
* Context dependence

e Examine drivers of
variation

* Opportunistic

* (Can be effective in some
circumstances, but lacks
applicability to many goals

* Temporal vs spatial focus

e Targeted

* Specific locations of
interest (e.g. population
fishing)

* Probability of impairment

¢ Limited inference
elsewhere



Frequency of Monitoring
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VSIS &

rdination

* Decentralized monitoring can limit broader
utility of data and result in unbalanced

efforts

* Some form of centralizing coordination
better ensures comparability and integration

* Bottlenecks can slow data availability

* Hierarchical coordination can maintain
engagement and inclusion while better
ensuring comparability

Centralized Coordination

Swarm elements communicate with a centralized
planner which coordinates all tasks.

Coordination by Consensus

Al swarm elements communicate to one another

and use “voting” or auction-based methods to con-

verge on a solution

Hierarchical Coordination

Swarm elements are controlled by “squad” level
agents, who are in turn controlied by higher-level
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Emergent Coordination

Coordingtion arises naturally by individual swarm
elements reacting to one another, ke in animal
SWArms.




Scientific Outreach & Communication

Ecosystem
Management &
Conservation

Analysis for Mercury 4

— £ TUSGS

NATIONAL PARK science for a chmging

— ASPALAOHIAN MTH OLLS

The Dragonfly
Mercury Project — a
national-scale
network example

* A hierarchical coordinated network design
* National in scope

e Centralized coordination and modular implementation



Questions?

e Contact: ceagles-smith@usgs.gov; 541-231-5381
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