

Atmospheric Deposition Modeling in the Chesapeake Bay Watershed

Sarah E. Benish¹, Jesse O. Bash², Kristen M. Foley², Christian Hogrefe², Wyat Appel², Sergey Napelenok², Lewis Linker³, Gary Shenk⁴, Gopal Bhatt⁵

¹Oak Ridge Institute for Science and Education (ORISE), US Environmental Protection Agency, Research Triangle Park, NC, USA ²US Environmental Protection Agency, Research Triangle Park, NC, USA ³US Environmental Protection Agency, Annapolis, MD, USA ⁴USGS Chesapeake Bay Program Office, Annapolis, MD USA

⁵Penn State, University Park, PA USA

Modeling Workgroup Quarterly April 5, 2022

Office of Research and Development

Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

Atmospheric Deposition Work

EQUATES

2002-2017

Source Apportionment

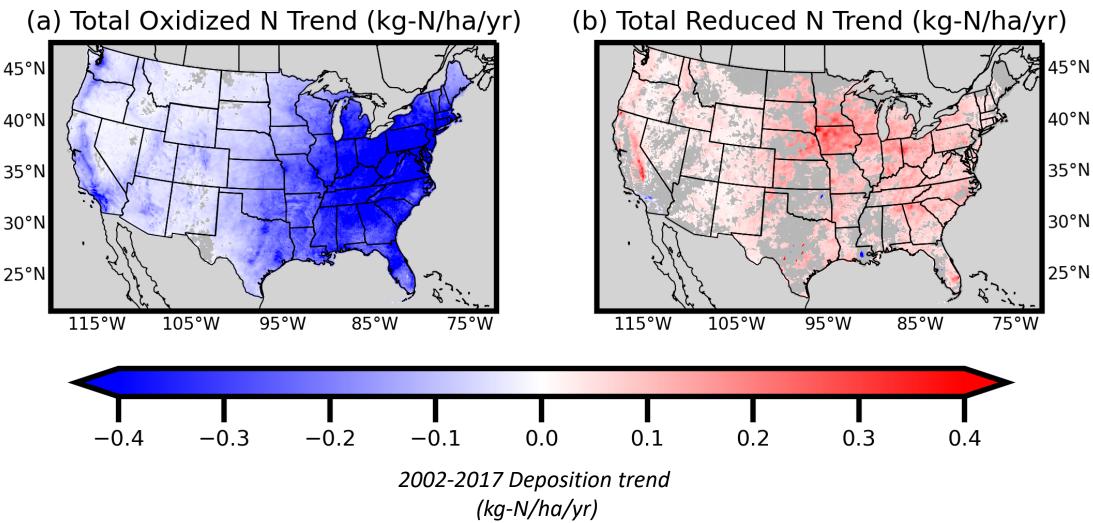
Chesapeake Bay Watershed

Integrated Source Apportionment Method

Atmospheric Deposition Work

EQUATES

2002-2017

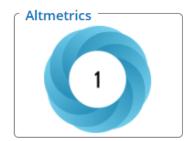

Source Apportionment

Chesapeake Bay Watershed

Integrated Source Apportionment Method

How has atmospheric deposition changed?

https://doi.org/10.5194/acp-2022-201 © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.


Abstract	Discussion	Metrics		

24 Mar 2022

Download
Preprint (1737 KB)
Metadata XML
Supplement (2792 KB)
BibTeX
EndNote

Short summary

Open access!

Status: this preprint is currently under review for the journal ACP.

Long-term Regional Trends of Nitrogen and Sulfur Deposition in the United States from 2002 to 2017

Sarah E. Benish^[b], Jesse O. Bash^[b], Kristen M. Foley^[b], K. Wyat Appel², Christian Hogrefe^[b], Robert Gilliam², and George Pouliot^[b]

¹Oak Ridge Institute for Science and Education (ORISE), US Environmental Protection Agency, Research Triangle Park, NC 27711, USA ²US Environmental Protection Agency, Research Triangle Park, NC 27711, USA

Received: 11 Mar 2022 - Accepted for review: 24 Mar 2022 - Discussion started: 24 Mar 2022 Discussion ends: May 5

Abstract. Atmospheric deposition of nitrogen (N) and sulfur (S) compounds from human activity has greatly declined in the United States (US) over the past several decades in response to emission controls set by the Clean Air Act. While many studies have investigated the spatial and temporal trends of atmospheric deposition, few assess dry deposition, incorporate a measurement-model fusion approach to improve wet deposition estimates, or focus on changes within specific US climate regions. In this analysis, we evaluate wet, dry, and total N and S deposition from multiyear simulations across climatologically consistent regions within the contiguous US (CONUS). Community Multiscale Air Quality (CMAQ) model estimates from 2002 to 2017 from the EPA's

Atmospheric Deposition Work

Trends

EQUATES

2002-2017

Source Apportionment

Chesapeake Bay Watershed

Integrated Source Apportionment Method

Application: Nitrogen Source Apportionment using ISAM

Time

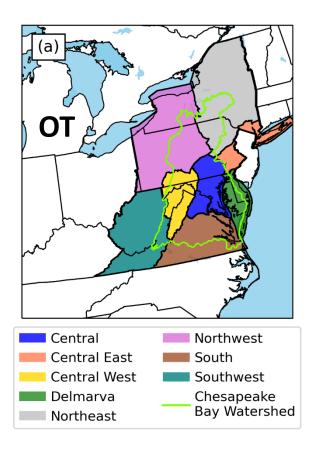
Grid


Quantifies the contributions of various emissions (source sectors and geographic regions) to pollutant levels in the domain, tracking concentration and deposition with near perfect mass closure.

Can calculate source attribution of a large number of sources directly in the model in one simulation.

For each species, the production and loss terms from each chemical reaction is tracked (generalized for the available mechanisms) and propagate changes to tags based on stoichiometry and production/loss rates of the precursors. • CMAQv5.3.2

• January-December 2016 (completed)


12 km windowed domain

ISAM Model Set Up

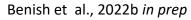
1. Geographic regions

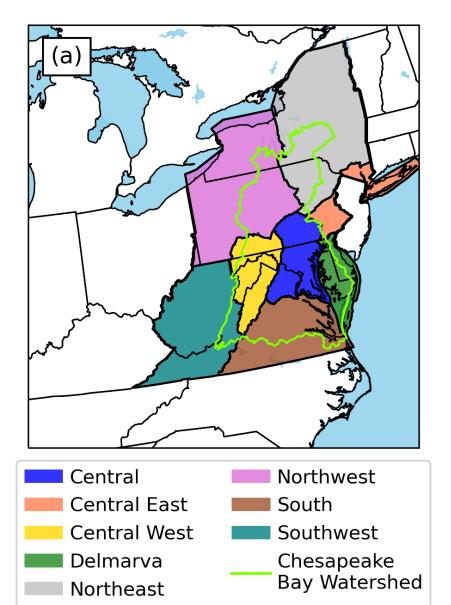
3. Compounds of interest

Tag Class	Model species			
Sulfate	SO ₂ , H ₂ SO ₄ , SO ₄ ²⁻			
Nitrate	HNO ₃ , HNO ₂ , NO ₃ ⁻ , NO ₃ , NO ₂ , NO, Organic Nitrates			
Ammonium	NH ₃ , NH ₄ ⁺			
EC	Elemental Carbon Aerosols			
OC	Organic Carbon Aerosols			
VOC	Volatile Organic Aerosols			
PM25_IONS	Cl, Na, Mg, K, Al, Si, Mn, and other aerosol cations			
СО	СО			
Ozone	All Nitrate species + all VOC species			

+

1-letter emission identifier

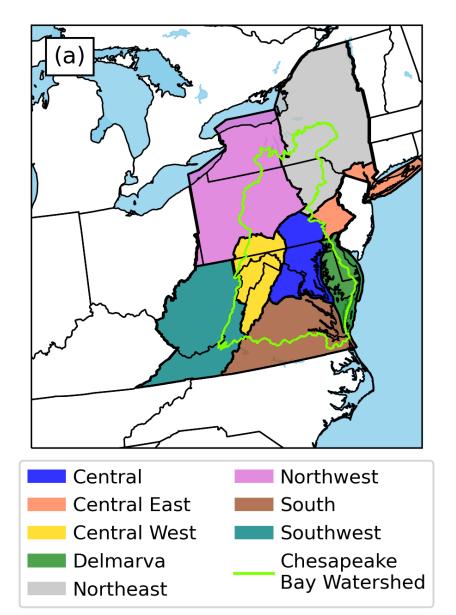



Source Regions

Source Apportionment to Chesapeake Bay Watershed

0% 4% 11% 24% 10% **0**% 0% 1% 1% 5% 2% 0% **9**% Central -Central East -0% 0% 1% 2% 1% 0% 4% 0% 0% 0% 2% 0% 0% 3% Central West -0% 1% 0% 1% 0% 0% 2% Delmarva -0% 0% 0% 1% 1% 0% 2% Northeast -0% 0% 3% 3% 1% 0% 7% Northwest -Other -0% 1% 3% 7% 3% 0% 14% 0% 0% 1% 3% 1% 0% 5% South -Southwest -0% 0% 2% 1% 0% 0% 3% . Animal Mobile Nonroad Poultry EGU CMV Emission Streams 25% 0% 26%

Total Oxidized N Deposition



Source Apportionment to Chesapeake Bay Watershed

iotal Reddeed in Deposition								
		35%	0 %	1%	4%	0%	14%	
	Central -	7%	0%	0%	2%	0%	1%	10 %
Cer	ntral East -	1%	0%	0%	0%	0%	0%	1%
-	itral West -	4%	0%	0%	0%	0%	7%	11%
210 0 0	Delmarva -	0%	0%	0%	0%	0%	2%	2%
	Northeast -	3%	0%	0%	0%	0%	0%	3%
	lorthwest -	6%	0%	0%	0%	0%	1%	7 %
	Other -	10%	0%	0%	1%	0%	2%	13%
	South -	3%	0%	0%	1%	0%	1%	5%
S	outhwest -	1%	0%	0%	0%	0%	0%	1%
		Animal	см́v Е	EGU	Mobile Stream	Nonroad IS	Poultry	
25%			14%		8%			

Total **Reduced** N Deposition

Benish et al., 2022b in prep

10

Source Apportionment to Chesapeake Bay Watershed

11% 0% 4% 24% **10**% 0% 0% 1% 5% 0% **9**% Central -1% 2% Central East -0% 0% 1% 2% 1% 0% 4% 0% Central West -0% 0% 2% 0% 0% 3% 0% 0% 1% 0% 2% Delmarva -1% 0% 0% 0% 0% 1% 1% 0% Northeast -2% 0% 3% 3% 1% 0% 7% 0% Northwest -0% 3% Other -1% 7% 3% 0% 14% 1% 3% South -0% 0% 1% 0% 5% 0% Southwest -0% 2% 1% 0% 0% 3% 1 Animal CMV EGU Mobile Nonroad Poultry Emission Streams (\Box) 0%

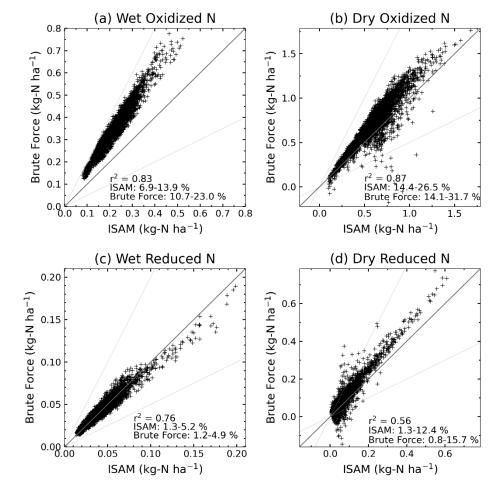
26%

Total Oxidized N Deposition

Total **Reduced** N Deposition

		35%	0 %	1%	4 %	0 %	14%	
Source Regions	Central -	7%	0%	0%	2%	0%	1%	10 %
	Central East -	1%	0%	0%	0%	0%	0%	1%
	Central West -	4%	0%	0%	0%	0%	7%	11%
	Delmarva -	0%	0%	0%	0%	0%	2%	2%
	Northeast -	3%	0%	0%	0%	0%	0%	3%
	Northwest -	6%	0%	0%	0%	0%	1%	7 %
	Other -	10%	0%	0%	1%	0%	2%	13%
	South -	3%	0%	0%	1%	0%	1%	5%
	Southwest -	1%	0%	0%	0%	0%	0%	1%
Animal CMV EGU Mobile Nonroad Poultry Emission Streams								

11


Source Regions

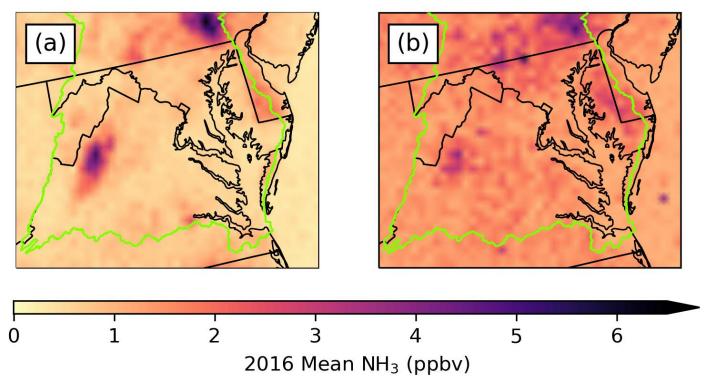
Benish et al., 2022b in prep

25%

Mobile Sector Comparison

- Cannot directly compare ISAM to observations for evaluation
- One option is to compare to brute force CMAQ simulations:
 - Simulation 1: All emissions
 - Simulation 2: Perturbed ("zero-out") mobile emissions
 - Difference is the effect from mobile emissions on deposition

nvironmental Protection



Closing Thoughts

- Source apportionment modeling within CMAQ is a critical tool for decisionmakers
 - Relies on accurate spatial and temporal emissions
- Satellites may be an additional tool to help constrain emissions in critical areas

Model

Satellite

