USWG CLIMATE RESILIENCY STRATEGY

CRWG MEETING – AUGUST 19, 2019

BACKGROUND – PSC DIRECTIVE

- Design and accelerate adoption of stormwater management practices that are appropriately designed for rainfall volumes and intensities that are expected in the future for counties in the Chesapeake watershed.
- Determine how stormwater BMPs that are redesigned to account for future rainfall volumes and intensity could generate nutrient and sediment reductions that can be counted in the WIP3 milestones up to 2025.
- Examine the top tier ag and urban BMPs that are most vulnerable to future climate risk with an emphasis
 on structural practices that could be adapted to become more resilient to future climate conditions
 (especially rainfall intensities and volumes).
- Describe the co-benefits of designing stormwater BMPs to mitigate future climate risk, especially as they relate to the protection of local infrastructure and public health and safety, including green infrastructure, urban floodplain management, riparian buffers, tidal and non-tidal wetlands and other management actions.

BACKGROUND – 2019 ACTIVITIES

- Stormwater Retreat Session -- https://chesapeakestormwater.net/wp-content/uploads/dlm_uploads/2019/05/Session-N-Presentations_compiled.pdf
- Proposed GIT Funding Projects:
 - Piloting the Development of Probabilistic Intensity Duration Frequency (IDF) Curves for the Chesapeake Bay Watershed (USWG)
 - Targeted Local Outreach for Green Infrastructure in Vulnerable Areas (Habitat GIT + LGAC)
 - BMP stakeholder engagement workshop to explore the feasibility of a BMP indicator (CRWG)

NEW USWG CLIMATE RESILIENCY STRATEGY

GOAL: Deliver engineering tools and management solutions to communities so they can protect their current and future watershed restoration investments from climate change risk.

Management Objective	Design Storm	Purpose(s)	Engineering Models
Recharge	Annual rainfall depth for site HSG	Promote infiltration & groundwater recharge	Equation = runoff coefficients
Water Quality (WQv)	90% frequency hourly rainfall event ²		Simple Method, runoff capture equation or SWMM
Channel Protection	One-year storm event	Prevent downstream bank erosion	NRCS TR-55 and TR-20
Channel Conveyance	, ,	Sizing of swales, channels, storm drain pipes, and detention ponds	NRCS models or SWMM
Road Drainage & Culvert	10 and/or 25-year storm	Protect road infrastructure from	
Design	event	erosion	Rational method
Dam & Bridge Safety	100 year storm event or	Design of embankments, risers and emergency spillways	Rational method
Floodplain Delineation	-100-year storm event or greater ³	Lateral and vertical boundaries of existing and ultimate 100-yr floodplain	
Stream and Floodplain		Protect roads, sewer and other public	
Hydraulics		infrastructure. Maintain stability of stream/floodplain restoration projects	TR-20, HEC-2, HEC-RAS
			2D and 3D models, and others

STEP I: PARTNER AND STAKEHOLDER ENGAGEMENT

- Interview and survey key stakeholders from the following groups:
 - CBP Managers (USWG, CRWG, WQGIT, etc.)
 - Federal Agencies: (NOAA, EPA, FEMA, NRCS, COE)
 - Bay State Stormwater and Flood Control Agencies
 - Municipal Agencies
 - Researchers

STEP 2: RESEARCH AND MANAGEMENT SYNTHESIS

- Summarize forecasted changes in rainfall intensity and volume
- Identify existing or ongoing efforts to produce new IDF curves across the Chesapeake Bay region – tie in with GIT funding project (pending funding)
- Assess current stormwater engineering standards and criteria
- Analyze the vulnerability of urban stormwater BMPs to reduced pollutant removal performance

STEP 3. DEVELOP LONG-TERM WORK PLAN

 Based on key findings from Steps I and 2, coordinate with key stakeholders to develop long-term workplan and recommended priority initiatives

HOW CAN CRWG HELP?

- Interested Stakeholders or helping us I.D. gaps
- Are there any essential resources we need to have at the outset?
- Who else is doing this kind of work?
- How frequently would you like updates at the WG?

QUESTIONS?

DAVID WOOD

WOOD.CSN@OUTLOOK.COM