Current spatial interpolation method used in Chesapeake Bay

Rebecca Murphy, Richard Tian (UMCES/CBP)

5-20-21

Approach

- Weighted average prediction of fixed-station data
- Inverse Distance Weighting (IDW) to determine the weights
 higher weights are assigned to closer values.

General: Weighted average prediction

$$\hat{Y}(s_0) = \sum_{i=1}^{n} w(s_i) Y(s_i)$$

 s_0 = location (x,y) to predict at

s_i = different x,y location with measured value

 $\hat{Y}(s_0)$ = value predicted at location s_0

 $Y(s_i)$ = value measured at location s_i

 $w(s_i)$ = weight assigned to measured value at s_i

Inverse distance weighting (IDW) squared predictor weights

$$w(s_i) = \frac{1/d_i^2}{\sum_{j=1}^{n} (1/d_j^2)}$$

d_i = distance between s_o and location s_i

Data & temporal component

- Data used: Long-term fixed monitoring PLUS partner citizen science and calibration from continuous monitoring stations
- Time period: Data collected over approximately 2 weeks is grouped as one snap-shot (e.g., first half of June), although most long-term fixed station monitoring is within a few days of each other.

Month	Cruise Number	Cruise ID	MD Main	VA Main	<u>Tidal</u> <u>Potomac</u>	<u>Patuxent</u>	Elizabeth	<u>York</u>	Rappahannock	<u>James</u>
Jun	BAY698	201706A	5-7	5-8	12*	1	13-14		13	6
Jun	BAY699	201706B	26-28	26-29				20		

Space

• Fixed interpolation grid:

- 51,839 in mainstem that are: 1km x 1km x 1m(depth) in mainstem
- 186,830 in tribs that go down to 50m x 50m x 1m

From Zhaoying (Angie) Wei Presentation on 4d visualization of interpolator

Space

• Vertical layers: A linear interpolation is done vertically first to every 1 m, and then those vertically interpolated values are grouped into same-depth-sets for horizontal interpolation.

Space

• Horizontal: IDW used in the horizontal with samples (or vertically interpolated values) at a single depth within a segment. Regional buffers extending into nearby segments are used in some places.

Chesapeake Bay Program 1998 segmentation design.

Implementation

- Originally Visual Basic Program (VOL3D, Bahner 2006) (still currently in use for some)
- At CBP: Implementation in Fortran, run by Richard Tian each year with current DO
- → Outputs: text files can be read in mapping and analysis programs

From 2007 Ambient Water Quality Criteria Addendum

Visualizing results

For DO criteria analysis

- DO is interpolated bay-wide (3D result)
- Pycnocline
 - Is calculated at each column of data using salinity & temp
 - Pycnocline upper depth is interpolated in 2D
 - Pycnocline lower depth is interpolated (as % of water below pyc) in 2D
- DO interpolations are then split into DUs (i.e., open water, deep water, deep channel). And fraction of the water volume exceeding each applicable DO criterion for each DU/segment/cruise (or 30-day period) is computed and used in the CFD.

Discussion: what features do we need to keep, and what new features are needed?

Keep:

- Usability for partner analysts
- Feeds into CFD/criteria assessment process
- Visualization of results
- 5

New needs:

- Temporal interpolation instead of snap-shots in time
 - Output at a temporal and spatial level to assess short-term criteria
 - Output that can aid in habitat assessments
- Uncertainty in the predictions (at least for diagnostics)
- Incorporation of more available data streams & types
- 5