

Responding to the PSC Request to Improve the CBP Monitoring Networks: Toxic Contaminant WG.

Scott Phillips and Emily Majcher, Nov 10, 2021

Steps for TCW:

"The long and winding road"

June: Overview by P. Tango

July: Priorities and objectives, and existing data (inventory)

August: Refining objectives and design considerations

Sept: Design considerations; current monitoring to support objective

Oct-Nov: identify gaps and options

Discussion Paper and Executive Summary

- Discussion Paper Sections
 - Need for enhanced monitoring
 - Monitoring objectives
 - Existing monitoring
 - Remaining gaps
 - Monitoring design considerations and options
 - TCW reviewed initial version in Oct
 - Revised version discussed today
- Executive Summary
 - 2-pages for PSC report

NWIS/USGS EDC (Internal USGS) Number of Mercury Records by Media Type - HUC 8 Chesapeake Bay Watershed

TCW Feedback on Discussion Paper

- Majority of jurisdictions responded and comments from NOAA, USFWS, USGS, and EPA.
- Overall positive and constructive feedback
 - Agreed with objectives (section 2)
 - Reviewed accuracy and provided input of existing monitoring (section 3) and gaps (section 4)
 - Section 5: need to have more specific recommendations
 - Nov 8 version of paper: tracking of all comments and potential revisions

Today's Discussion:

Updated Discussion Paper (Nov 9)

- --Clean version
- --Quick Review of updated sections
- --Focus feedback on Section 5: proposed recommendations

Executive Summary

June: Overview by P. Tango

July: Priorities and objectives, and existing data (inventory)

August: Refining objectives and design considerations

Sept: Design considerations; current monitoring to support objective

Oct-Nov: identify gaps and options

Monitoring Needs

Reviewed outcomes for Toxic Contaminant Goal

- Identified four primary monitoring needs:
- Changes to PCBs levels as total maximum daily loads (TMDLs) and associated management actions are implemented.
- Changes to mercury as TMDLs and associated management actions are implemented.
- Assessing contaminants of widespread concern (such as pesticides).
- Assessing contaminants of emerging concern (such as per and polyfluoroalkyl substances [PFAS] and microplastics).

Objectives

- TCW developed objective for each monitoring need
 - PCBs and emerging contaminants highest priorities
 - Decided to focus on PCB objective
- Establish current conditions and determine if remediation or management actions are resulting in downstream reductions in PCBs.
- A multi-pronged approach with several inter-related components:
 - (1) current conditions,
 - (2) refine identification of sources
 - (3) determine PCB response to mitigation efforts
 - (4) assess fish conditions and relation to consumption thresholds

Current Monitoring

 Requested monitoring information as it related to PCB objective

• Table for:

- Monitoring approach(es) you are using,
- Media you are sampling (sediment, surface water or fish),
- · Frequency (annual, cycling 5-year rotations, etc.),
- · Field/analytical methods you are using (passive, wet/dry weather grabs).
- · Assessment endpoint (e.g., load, concentration, other).

Questions on:

- · Better identify sources
- Determine if fish are safe to consume
- Thank you for your responses!

NWIS/USGS EDC (Internal USGS) Number of Mercury Records by Media Type - HUC & Chesapeake Bay Watershed

Remaining Gaps

- Limited monitoring to directly assess change due to mitigation at a scale of interest (exceptions, some DE fish data collection, some Anacostia work)
- Sampling locations are currently limited in number and frequency that samples are collected
 - Sample fish every 2-5 years
 - Streamflow gages may limit calculations of loads (vs. concentration)
- Methods to collect and analyze surface water vary among jurisdictions and federal agencies (may also vary for fish* - 8082 vs. 1668)

Today's Discussion:

Updated Discussion Paper (Nov 9)

- --Clean version
- --Quick Review of updated sections
- --Focus feedback on Section 5: proposed recommendations

Executive Summary

June: Overview by P. Tango

July: Priorities and objectives, and existing data (inventory)

August: Refining objectives and design considerations

Sept: Design considerations; current monitoring to support objective

Oct-Nov: identify gaps and options

Design Consideration and Options

- Asked for your feedback on:
 - What would we do?
 - Where do we want to do it?
- Organized around three recommendations:
- 1: Focus monitoring in geographic areas to help the jurisdictions assess PCB response where mitigation actions are being implemented and or planned
- 2: Geographic focus areas should be in places with PCB reductions can be detected.
- 3: Initiate monitoring in a single geographic-focus area as a pilot test

Recommendation 1

- Focus monitoring in geographic areas to help the jurisdictions assess PCB response where mitigation actions are being implemented and or planned
 - Based on where active (or planned) implementation mitigation practices for a TMDL

Recommendation 2

- Geographic focus areas should be in places with PCB reductions can be detected
 - Media specified: Fish vs. surface water (response time?)
 - Statistical power decline vs. observational decline
 - 1-3 locations per area
 - Frequency

Decrease in skin tumor prevalence Brown Bullhead, Anacostia River (Pinkney 2019)

Recommendation 3

• Initiate monitoring in a single geographic-focus area as a pilot test

Jurisdiction	Geographic-focus Areas
DC	Anacostia
MD	Tidal Patapsco River (Baltimore Harbor/Curtis Bay/Middle Branch), Anacostia tributaries (eg, Lower Beaverdam Creek)
VA	Potomac tributaries at head of tide
DE	Nanticoke River

Potential Costs

• With a focus on fish or shellfish sampling, the estimated cost of per sample location, per event would be approximately \$22,000, for a total of \$22,000 to \$66,000 per year for 1-3 locations

 With a focus on quarterly surface water (water column) sampling, the estimated cost per sampling location would be approximately \$70,000 per sample location, per event, for a total of \$70,000 to \$210,000 per year for 1-3 locations,

Next Steps:

--Review of updated discussion paper and Executive Summary

--Revise and finalize papers

--Discuss any remaining issues at Dec TCW meeting

--Submit to STAR for inclusion report (Dec)

June: Overview by P. Tango

July: Priorities and objectives, and existing data (inventory)

August: Refining objectives and design considerations

Sept: Design considerations; current monitoring to support objective

Oct-Nov: identify gaps and options