

Responding to the PSC Request to Improve the CBP Monitoring Networks: Interaction with the Toxic Contaminant WG

Scott Phillips and Emily Majcher,
October 13, 2021

### Issues for New Monitoring

- Overall: Status and Trends
  - Status: help target places for mitigation
  - Trends: access if mitigation reducing contaminants
- Needs and priorities for new monitoring
- Monitoring objectives
- Network design considerations
- Existing monitoring
- Remaining gaps
- Options to address gaps

#### NWIS/USGS EDC (Internal USGS) Number of Mercury Records by Media Type - HUC 8 Chesapeake Bay Watershed



June: Overview by P. Tango

July: Priorities and objectives, and existing data (inventory)

August: Refining objectives and design considerations

Sept: Design considerations; current monitoring to support objective

Oct-Nov: identify gaps and options



## Monitoring Objectives in Priority Order Enhance monitoring to ...

- Establish current conditions and determine if remediation or management actions are resulting in downstream reductions in PCBs.
- Determine occurrence of PFAS and microplastics in surface waters of major river basins of the Chesapeake Bay watershed with varied land use. (STAC workshop + Action Team)
- Determine if implementation of BMPs and conservation practices result in decline in specific (prioritized) pesticide concentration.
- Determine if reductions in air deposition of mercury are reflected in fish tissue decline, with a focus on food/recreational fishing trends in urban and non-urban areas.

June: Overview by P. Tango

July: Priorities and objectives, and existing data (inventory)

August: Refining objectives and design considerations

Sept: Design considerations; current monitoring to support objective

Oct-Nov: identify gaps and options



Current
Conditions:
monitoring used
to identify
impairments.

Identify Sources: Track-back studies used for TMDLs PCB response to mitigation actions monitoring used to assess change

Fish Condition:
data used for
fish
consumption
advisories

Establish current conditions and determine if remediation or management actions are resulting in downstream reductions in PCBs.

A multi-pronged approach was described to comprehensively address the priorities of jurisdictions and monitoring agencies through several inter-related components:

- (1) current conditions,
- (2) help identify sources,
- (3) determine PCB response to mitigation efforts and
- (4) assess fish conditions and relation to consumption thresholds

| Monitoring Approaches for this Objective                                                                                                                                            | Assessment<br>Endpoint                              | Media<br>(sw, fish) | Frequency<br>(Annually,<br>quarterly,<br>other?)                           | Field Method<br>(passive, grab,<br>other)                     | Analytical<br>Method<br>(1668, 8082,<br>other?) | Considerations                                                                              | Cost<br>(L,M,H) | Rank |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------|----------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------|------|
| Head of tide sw sampling (DE model) – major CBW river basins, flow determination                                                                                                    | Load reductions                                     | SW                  | Variable,<br>Biannual-5 years                                              | Variable opinions –<br>no resolution                          |                                                 | Would require USGS streamflow gage to estimate loads                                        | Н               |      |
| Head of tide sw samples (major basins, or targeted to high targeted CBW river basins with high remediation or management activities                                                 | Ambient conc.<br>that fish are<br>exposed to        | SW                  | TBD                                                                        | Passive would likely<br>work here, some<br>discussion of grab |                                                 | Removes need for streamflow gage, targets fish exposure                                     | M               |      |
| Source identification                                                                                                                                                               | Conc and loads                                      | Multi-<br>media     | Intensive,<br>typically not<br>repeat events<br>over long<br>timeframe     | variable                                                      | variable                                        | Fine-scale will likely make this unattainable due to cost                                   | Н               |      |
| Fish tissue sampling- major CBW river basins                                                                                                                                        | Conc. In fish tissue<br>(compare to FCA<br>targets) | fish                | Cycling strategy<br>over 5 year<br>period, statistical<br>count of samples | Uniform species,<br>fish type,<br>composites<br>required?     | Low res 1668<br>may be ok                       | May have historical data for<br>trends consideration, power<br>analysis to inform frequency | МН              |      |
| Targeted Fish tissue sampling – targeted CB river basins (incl background sub watersheds) - where management activities are high and with some background watersheds, relying on NA | Conc. In fish tissue                                | fish                | Cycling strategy<br>over 5 year<br>period, statistical<br>count of samples | Uniform species,<br>fish type,<br>composites<br>required?     | Low res 1668<br>may be ok                       | May have historical data for<br>trends consideration, power<br>analysis to inform frequency | M               |      |

June: Overview by P. Tango

July: Priorities and objectives, and existing data (inventory)

August: Refining objectives and design considerations

Sept: Design considerations; current monitoring to support objective

Oct-Nov: identify gaps and options



### TCW Partner Feedback On Current Monitoring

- Requested monitoring information as it related to PCB objective:
- Table for:
  - Monitoring approach(es) you are using,
  - · Media you are sampling (sediment, surface water or fish),
  - · Frequency (annual, cycling 5-year rotations, etc.),
  - · Field/analytical methods you are using (passive, wet/dry weather grabs).
  - · Assessment endpoint (e.g., load, concentration, other).
- Questions on:
  - Better identify sources
  - · Determine if fish are safe to consume
- Summary file on calendar page thank you for your responses!

June: Overview by P. Tango

July: Priorities and objectives, and existing data (inventory)

August: Refining objectives and design considerations

Sept: Design considerations; current monitoring to support objective

Oct-Nov: identify gaps and options



# Identification of Gaps Feedback Needed- Are these accurate?

- Limited monitoring to directly assess change due to mitigation at a scale of interest (exceptions, some DE fish data collection, some Anacostia work)
- Sampling locations are currently limited in number and frequency that samples are collected
  - Sample fish every 2-5 years
  - Streamflow gages may limit calculations of loads (vs. concentration)
- Methods to collect and analyze surface water vary among jurisdictions and federal agencies (may also vary for fish\* - 8082 vs. 1668)

June: Overview by P. Tango

July: Priorities and objectives, and existing data (inventory)

August: Refining objectives and design considerations

Sept: Design considerations; current monitoring to support objective

Oct-Nov: identify gaps and options



## How to fill the gaps: Options?

- Design considerations of an example sampling "site":
  - Be downstream of migration actions but in close enough proximity to detect PCB changes
    - What is threshold for # actions to qualify as a site? (based on estimates of loading, # of actions, other criteria?)
  - In order to leverage ongoing fish data collection, consider an expansion of the fish data collection efforts using low-level detection methods and a uniform approach to collection and processing
  - Sample at a frequency that is determined adequate to detect changes over time
- What would we do?
- Where do we want to do it?

### Gaps and Options: What could be done

- What would we do? –
   remaining questions for input
  - Media specified: Fish vs. surface water (response time?)
  - Statistical power decline vs. observational decline
  - How many sites in a location?
  - Frequency



Decrease in skin tumor prevalence Brown Bullhead, Anacostia River (Pinkney 2019)

### Gaps and Options: Where?

### Where would we do it?

- Could be based on where active (or planned) implementation mitigation practices for a TMDL
- Each jurisdictions has potential places

### Feedback:

- Does the TCW want to include potential locations?
- Could you suggest for your jurisdiction? (meet criteria agreed upon within TCW)





### Next Steps

- Review of discussion paper (2-weeks) October 29
- Distribute Final discussion paper and 2-pager prior to Nov. 10 meeting
- Brief discussion and concurrence of 2-pager as part of Nov. 10 meeting