

Rosemary Fanelli, Matthew Cashman, and Aaron Porter
U.S. Geological Survey
February 19, 2021

Project goal and scope

Question: Which stressors are most affecting <u>stream health</u> in freshwater ecosystems in the Chesapeake Bay watershed?

Stream health = measures of benthic community composition, function, or other response

Stressor = A local factor that can directly affect patterns in stream health Drivers = Factors that cause changes in stressor conditions or levels

- Use existing information to summarize current understanding of the dominant stressors in different landscape settings/originating from different drivers
- Summarize two types of sources:
 - Scientific literature
 - Jurisdictional 303d lists

Extracting key information from selected literature

- General literature search using key words
- General study characteristics
 - Drivers examined in the study
 - Agriculture, urbanization, wastewater, industrial point sources, energy extraction (mining, hydropower), atmospheric deposition, climate change
 - Stressors measured in the study
 - Study design (setting, number of obs. units, etc.)

Methodology

- How stream health was measured (IBI, drift rates)
- How stressor(s) were quantified

Key conclusions

- Information on stressor importance (rank)
- Thresholds for detectable changes in stream health
- Interactions between stressors

Literature review workflow

Literature review workflow

Literature review workflow

Multi-stressor studies (n=78)

Multi-stressor studies selected for further analysis (n=65)

- Examined each study's statistical analysis
- Determined study was eligible if:
 - 1. Stressor-bio relationships were quantified
 - 2. Appropriate statistical approaches were applied and reported
 - Examples = multiple linear regression, multivariate analysis, machine learning techniques (BRT)
 - Correlations were included if alpha and/or p-values were reported

Multi-stressor

Multi-stressor studies selected for further analysis (n=65)

- Examined each study's statistical analysis
- Determined study was eligible if:
 - 1. Stressor-bio relationships were quantified
 - 2. Appropriate statistical approaches were applied and reported
 - Examples = multiple linear regression, multivariate analysis, machine learning techniques (BRT)
 - Correlations were included if alpha and/or p-values were reported

Did not relate stressor to biological response (n=20)

Insufficient statistical analysis or reported stats (n=10)

Sufficient stats for use in frequency analysis (n=35)

Multi-stressor studies (n=78)

Multi-stressor studies selected for further analysis (n=65)

- Examined each study's statistical analysis
- Determined study was eligible if:
 - 1. Stressor-bio relationships were quantified
 - 2. Appropriate statistical approaches were applied and reported
 - Examples = multiple linear regression, multivariate analysis, machine learning techniques (BRT)
 - Correlations were included if alpha and/or p-values were reported

NARRATIVE SUMMARY

Did not relate stressor to biological response (n=20)

Insufficient statistical analysis or reported stats (n=10)

Sufficient stats for use in frequency analysis (n=35)

All studies are being incorporated into the narrative summary when possible

Study eligibility for frequency analysis

Study design definitions

LAR = Large study (15+ observations units)

SMA = Small study (<15 observations units)

LON = Longitudinal study along one stream

LAB = Laboratory, flume, or mesocosm study

Provisional results, for feedback only

Study eligibility for frequency analysis

Which studies were eligible?

- Most large studies
- Most studies that focus on agriculture, urbanization, and mining

Study design definitions

LAR = Large study (15+ observations units)

SMA = Small study (<15 observations units)

LON = Longitudinal study along one stream

LAB = Laboratory, flume, or mesocosm study

Study eligibility for frequency analysis

Which studies were eligible?

- Most large studies
- Most studies that focus on agriculture, urbanization, and mining

Which studies were not?

- Many longitudinal studies
- Point source studies
- Some smaller studies

Study design definitions

LAR = Large study (15+ observations units)

SMA = Small study (<15 observations units)

LON = Longitudinal study along one stream

LAB = Laboratory, flume, or mesocosm study

- Extracted stressor measurements that were found to be significant/important based on study's statistical analysis
- Reported additional response variables separately
- Coarsened stressor measurements into general categories
 - In-stream: Acidity, DO, flow, habitat, nutrients, salinity or major ions, sediment, temperature, toxics-Hg, toxicsmetals, toxics-pesticides, toxics-other (e.g., organic contaminants)
 - Out-of-channel "stressors": three types
 - Riparian: riparian buffer width, riparian land use, etc.
 - Physical: catchment area, watershed slope, etc.
 - Landscape: land use (percent urbanization, impervious cover, agriculture, percent mining)
 - Compared list of stressors reported as important to stressors measured

Bryant and Carlisle, 2012

Agriculture studies (n = 16)

Agriculture studies (n = 16)

Agriculture studies (n = 16)

- 1. Nutrients, habitat, and sediment were most often measured and most often reported as important
- 2. Pesticides were measured less frequently but were important in all studies in which they were measured
- 3. Temperature and flow found to be important in fewer studies

Urban studies (n = 20)

Includes general urban and wastewater studies

Urban studies (n = 20)

Includes general urban and wastewater studies

Urban studies (n = 20)

Includes general urban and wastewater studies

- 1. Nutrients, habitat, and salinity most frequently measured
- 2. Toxics, salinity/ions, and flow were most important
- 3. pH, sediment, and DO were not frequently reported as important

All eligible studies (n = 35)Includes all drivers

All eligible studies (n = 35)Includes all drivers

All eligible studies (n = 35) Includes all drivers

- 1. Toxics, salinity/major ions, flow, and sediment were important in > 50% of studies
- 2. Toxics (pesticides, organics) were rarely measured
- 3. Habitat and nutrients often measured but reported important only 50% of the time

Preliminary study findings

Results from frequency analysis

- Frequency analysis focused on certain drivers/landscape settings
- Difficulty in cross-study comparison due to variability in study design and statistical analyses used
 - **General:** Toxics*, salinity/major ions, flow, and sediment
 - Agricultural settings: Nutrients, habitat, sediment, and pesticides*
 - **Urban settings:** Toxics*, salinity/major ions, and flow
- Results change based on what response variables are measured

Next steps for report

- Continue summarizing studies in narrative sections
- Short analysis comparing in-stream vs. out-of-channel stressors
- Extract info on thresholds for select stressors
- Draft results from 303d analysis and finish comparison

Mining studies (n = 6)

Mining studies (n = 6)

Mining studies (n = 6)

- 1. Landscape factors (e.g., coal production, % watershed mined) and salinity/ions important in > 50% studies
- 2. Metals and habitat often measured but not often reported as important
- 3. pH, flow, temperature, and nutrients not reported as important

Studies using EPT richness as response variable (n = 15)

- 1. Toxics, salinity/major ions, and sediment were important in > 50% of studies
- 2. Toxics (pesticides, organics) were rarely measured
- 3. Temperature, flow and pH were rarely reported as important

Studies using a multi-metric index as response variable (n = 12)

- 1. Flow, toxics, salinity/major ions, and sediment were important in > 50% of studies
- 2. Habitat measured in all studies but important in < 50%
- 3. Watershed and riparian characteristics often measured but rarely important

