Lessons learned from Clarksburg, Maryland Impacts of suburban development and distributed stormwater control on stream functions Krissy Hopkins U.S. Geological Survey South Atlantic Water Science Center #### **USGS Urban BMP Team** Krissy Hopkins Natalie Hall Brianna Williams Marina Metes Charlie Stillwell Rosemary Fanelli Dan Jones ## Road Map - Background - Objectives - Study area - Lessons learned ## Suburban development is risky for streams Forest to suburban in Durham, NC Agriculture to suburban in Clarksburg, MD # Focus on assessing the impacts of stormwater infrastructure at a watershed scale # Stormwater Control Measures No Detention Pond Retention Pond Swales Stormwater Control Measures Vegetated Swales Bioretention Is this a good solution? Source Control of Stormwater ## Objectives What happens to stream health when **agricultural land is converted to suburban development** with distributed stormwater infrastructure practices incorporated into the design of the neighborhood. Centralized stormwater management A few, large practices Distributed stormwater management Many, smaller practices ## Objectives How does the use of distributed stormwater facilities on a watershed scale affect ## Study Area Clarksburg, Maryland Control vs treatments sites Tracking channel changes during and after development Development Timelines 2000 1995 **Agriculture** #### Suburban high density of stormwater practices ### 100% of impervious surfaces are treated Dry wells infiltration detention swales 33% impervious 91% single family detached 105 practices/km² 44% impervious 50% detached, 50% townhouse 274 practices/km² # Tree boxes and infiltration detention #### Stormwater practices arranged in treatment trains ## Hydrology #### How much rain falls before a flow response? #### What happens to runoff yield? Less runoff with distributed stormwater management especially for events < 1 inch #### After development in Treatment 1 and 2 Peak flows were attenuated for small precipitation events (< 10mm) #### **Event Precipitation Depth** #### After development in Treatment 1 and 2 Peak flows were 2-3 higher in treatments than forested site (11-20 mm) # **Streamflow:** Stormflow peaks were typically larger in Treatment 2 ## BEFORE 2004 2% impervious cover ## **AFTER** VS 2017 44% impervious cover #### **Streamflow changes in Treatment 2** #### **Before Development vs After Development** 1.2-1.6 inches rain # Baseflow increased during the construction phase of suburban development # Can distributed stormwater control maintain hydrologic function? **Can** reduce the frequency of events <u>Can</u> attenuate peak flows and runoff volumes, <u>but</u> storage capacity matters. Large rain events not adequately controlled in any of the urban sites. Baseflow may increase during construction and remain elevated. ## Water Quality – Baseflow Nitrate Probably of groundwater nitrate exceeding 3 mg/L #### **Baseflow nitrate concentrations** Nitrate concentration declined but remain elevated #### **Baseflow nitrate concentrations** - Overall export remained about the same due to increased baseflow - Declines in concentration may be related to removal of agriculture soils and reduction in fertilizer inputs Legacy Nitrogen Timing of agricultural land conversion # Treatment 1 had LESS overall sediment export than the forested and urban controls #### **Distributed vs Forested** #### **Distributed vs Centralized** # Sediment concentration coming out of stormwater practices was lower than in stream. # Rising specific conductance trends in all three treatment watersheds likely driven by imperious cover $32~\mu\text{S/cm}$ per year increase 20 μS/cm per year increase 6 μS/cm per year increase # Can distributed stormwater control maintain water quality? <u>It can</u> reduce nitrate concentrations, <u>but</u> overall export remained about the same. <u>It can</u> reduce sediment loads, <u>but</u> in-channel sources remain due to altered hydrology. It can increase ion loads, because of more impervious cover and winter salting. ## Topography Most topographic change occurred during the construction phase, with substantial excavation and fill across the entire watershed and deposition within the riparian areas. Topography Elevation change Stream channels #### Large scale fill and excavation. Flatten ridgetops and fill valleys #### Channels were incised prior to development Streambanks continue to erode # Increase in silt/clay in Treatment 2 during construction and after construction in Treatment 1 ## Benthic community # Forested site remains in excellent to good condition # Urban control site remains in fair to poor condition Hopkins et al. 2022 Freshwater Science #### Dominated by a single tolerant family **Benthic** assemblages may be somewhat protected by stormwater facilities, but sensitive families may not fully recover #### Lessons learned #### Distributed stormwater management, <u>Can</u> attenuate peak flows and runoff volumes, <u>but</u> storage capacity matters. <u>Can</u> improve water quality for some, <u>but</u> not all constituents (e.g., salt). <u>Can</u> reduce impacts to biota, <u>but</u> sensitive families may not recover. #### Lessons learned Construction phase is important, Baseflow **increased** during construction Substantial **excavation and fill** across the entire watershed during construction **Deposition in riparian areas** during construction Increase in **fine sediment** in the channel #### Lessons learned #### Summary - Long-term datasets are valuable - Need to assess multiple stressors to understand suite of impacts on biota - Distributed stormwater control can accomplish some goals, but not all Find the science summary <u>HERE</u>. Krissy Hopkins, khopkins@usgs.gov