Introduction to Cloud Computation

Or how I learned to get over my fears and learn love the cloud John Massey, ASRC Federal

Overview

- Typical Model Execution
- What is a High Performance Cluster Anyway?
- Benefits of Cloud Processing
- Cloud Providers and the CBPO
- HPC Implementation at CBPO
- Cloud Computing Costs
- How we could do it better
- Cloud Providers and You
- Getting started in AWS

Typical Model Execution

- What is a model to a computer?
 - Simply put, to a computer a model is nothing more then another piece, or several pieces, of software to run.
- Can I run a model locally or on a single server?
 - Yes, well maybe or maybe not
 - Do you have days? Weeks? Or maybe even months to wait for results?
- How about on a High Performance Cluster?
 - A HPC or High Performance cluster is ideal for large jobs when combines with a job scheduler like SLURM or Torque, OpenLava, etc....

What is a High Performance Cluster Anyway?

"High-Performance Computing," or HPC, is the application of "supercomputers" to computational problems that are either too large for standard computers or would take too long. A desktop computer generally has a single processing chip, commonly called a CPU. A HPC system, on the other hand, is essentially a network of nodes, each of which contains one or more processing chips, as well as its own memory. — **The National Institute for Computational Sciences**

Typical Model Execution HPC Edition

- Benefits of HPC Computation / Parallel Processing
 - Break large jobs into smaller tasks that can be handled by individual processing cores.
 - Run several Large processing tasks simultaneously.
 - Perform multiple modeling steps that could perform all tasks from initial data loading through processing, and potentially even post processing.
 - Thanks to lower processing times, multiple result sets can be generated much quicker.
 - Job queues allow for unattended processing.

Benefits of Cloud Processing

- Lower cost of ownership*
 - Pay only for what you use.
 - Low or no up front cost.
- Flexibility
 - Compute Resources
 - Allows for multiple configurations of systems.
 - Can be temporary or permanent.
 - Storage
 - Very large file storage at varying costs.
 - Provides for multiple data access types.
- Different Resource types
 - Software as a service
 - Infrastructure as a service
 - Platform as a service

Cloud Providers and the CBPO

- CBPO utilizes cloud resources provided by UMCES through an ongoing grant.
- After a review of all the major cloud providers (Google/Microsoft/Amazon) UMCES choose Amazon to serve as our cloud provider.
 - At the time AWS was the most mature.
 - Offered the largest array of service options.

HPC Implementation at CBPO

- Cloud Formation Cluster (CFNCluster) was used to create a base HPC cluster
 - Easily repeatable system creation.
 - Create resources from CLI application (Users or Administrators)
 - Dynamic compute node scaling based on number of tasks submitted to the cluster, or static if necessary.
 - Choice of Operating System and Job Scheduler.
 - All instances automatically customized using a 'post install' shell script
 - Allows for full customization of the master and compute nodes using standard bash scripting.
 - User accounts
 - Project Specific software
 - File Permissions, etc...
 - Can have different configuration sets for master/client nodes.
 - Ability to customize running cluster from AWS console, or CFNCluster application.
 - Largely a "Fork Lift" migration of the CBPO's previous HPC environment to AWS.

CBPO Cloud "Hardware"

- 1 Master node c4.8xlarge 36 Core + 60GB Memory
 - 200 GB for OS and Home Directories
 - 16TB / Modeling directory
 - 2 Archive disks totaling 22TB local "cool" storage
 - Single disk Max for EC2 Local disk is 16TB
- 0-8 Compute nodes c4.8xlarge 36 Core + 60GB Memory
 - 15GB for OS
 - /Home, /Modeling and /opt shared from Master to Compute
- External "Cold" Storage
 - Multiple S3 'Buckets' totaling ~130TB

Deploy an Elastic HPC Cluster

Access on-demand, scalable resources for your High-Performance Computing (HPC) workloads

Cloud Computing Costs

- Cost can vary depending on workload
 - Full Price 100% compute running Per Month
 - Full Price 30% compute utilized Scaling On Demand
 - Actual usage over time in CBPO AWS Console Reports
- Reservations cost less than on-demand systems depending on usage time.
 - Reservations can span multiple systems
 - Reservations are time, not host based.
- Disk storage is not-reservable
 - Use lower priced storage whenever possible to contain costs.
 - Disk storage can quickly eat through a budget.

How we could do it better

- Running your own cluster isn't the only way.
 - Leverage S3 for source/result data storage
 - Lowers cost of data storage
 - Multiple access methods
 - HTTP/HTTPS
 - API
 - CLI utilities
 - C/Python/Perl/Java libraries.
 - Ability to use this file system directly as part of processing depends on the processing needs/method.
 - AWS Batch
 - Amazon service utilizing Docker instances to perform HPC tasks without a master server.
 - Job Scheduler service used to send tasks to the dockerized compute containers.
 - Minimal changes to existing modeling code.
 - AWS Redshift
 - Compute cluster most normally associated with Python/Spark.
 - Simpler setup
 - Would require a full Model re-write

Cloud Providers and You

- Do you already have access to an HPC System?
- Does your organization already have a cloud provider?
- Can your budget scale with your workload?

Getting started with Amazon Web Services

- Free access to basic resources for 12 Months: https://aws.amazon.com
- Install CFNCluster: https://aws.amazon.com/getting-started/projects/deploy-elastic-hpc-cluster/
- Create or copy a CFNCluster configuration file
- Run CFN Cluster
 - Login via SSH using connection string provided at end up setup.
- Work through the 30Box model, or any code base of your choosing.
- Don't forget to clean up / shutdown resources when you are finished.