Sanctuary Oyster Reefs

Presentation by the City of Virginia Beach November 2, 2015

Oysters

- Filter feeders that improve water quality
- Single adult oyster can filter 50 gallons of water in 24 hours.
- Consume algae and phytoplankton
- Remove nitrogen and sediment
- Prone to Diseases caused by MSX and Dermo

Chesapeake Bay Oyster Recovery: Native Oyster Restoration Master Plan

Maryland and Virginia

SEPTEMBER 2012

Prepared by U.S. Army Corps of Engineers Baltimore and Norfolk Districts

ASSESSMENT OF OYSTER REEFS IN LYNNHAVEN RIVER AS A CHESAPEAKE BAY TMDL BEST MANAGEMENT PRACTICE

Mac Sisson, Lisa Kellogg, Mark Luckenbach, Rom Lipcius, Allison Colden, Jeff Cornwell, and Michael Owens

Final Report to the

U. S. Army Corps of Engineers, Norfolk District and The City of Virginia Beach

Special Report No. 429 In Applied Marine Science and Ocean Engineering

> Virginia Institute of Marine Science Department of Physical Sciences Gloucester Point, Virginia 23062

> > December 2011

Oysters

- The VIMS report showed that oysters play a very important role in removing excess nitrogen through consumption of phytoplankton.
- Nitrogen removal rate through nitrification/denitrification at the oyster reef sites range from 15 – 20 pounds/acre/month
- For bare sediment, nitrogen removal by nitrification/denitrification was 1 pound/acre/month
- Total nitrogen sequestered by oyster and other organisms on the reef ranged from 495 – 656 pounds/acre
- For bare sediment, total nitrogen sequestered by various mechanisms was 32 pounds/acre

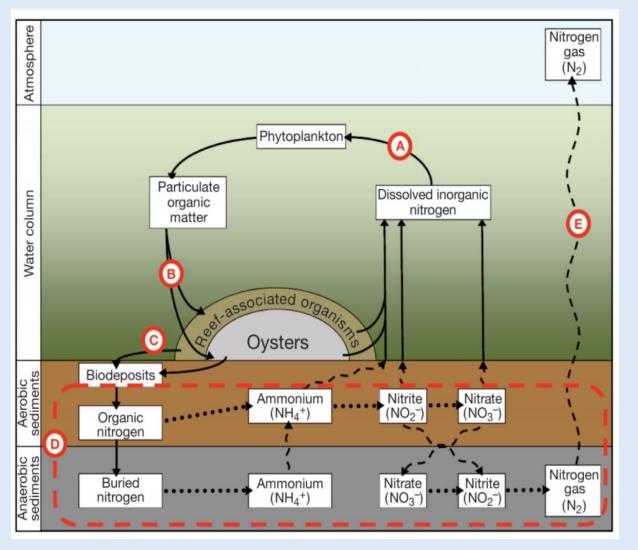
Table IV.1. Summary estimates of nitrogen fluxes and sequestration by site. See text for discussion of methods used to calculate monthly rates and constraints on their proper use.

	Site							
	HM0	HMLsed	HML	HMM	НМН	1F2F	LCW	LCE
Nitrogen recycling rates NH ₄ ⁺ + NO ₂₊₃ flux								
μmoles m ⁻² hr ⁻¹	-131.81	141.71	774.99	1482.46	1620.06	539.07	139.07	1148.33
lbs acre-1 month-1	-11.83	12.72	69.55	133.04	145.39	48.38	12.48	103.05
Nitrogen removal via denitrification								
μmoles m ⁻² hr ⁻¹	11.47	25.28	168.59	123.44	225.15	108.46	153.79	319.59
lbs acre-1 month-1	1.03	2.27	15.13	11.08	20.21	9.73	13.80	28.68
Nitrogen removal via sequestration								
g m ⁻²	3.66	12.04	73.70	71.46	55.66	30.60	59.19	7.00
lbs acre ⁻¹	32.6	107.25	656.48	635.53	495.79	272.57	527.23	62.45

Nitrogen removal via nitrification/denitrification at oyster reef sites ranged from 15 to 28 pounds/acre/month compared to bare sediment sites of 1.03 pounds/acre/month for the months sampled.

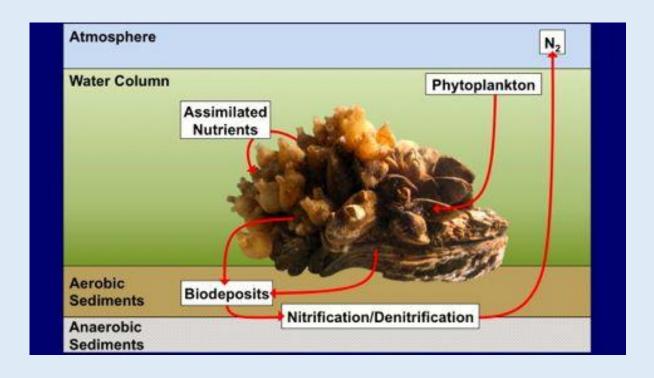
Source: Assessment of Oyster Reefs in Lynnhaven River as a Chesapeake Bay TMDL Best Management Practice

Oysters


Fig. 1. Primary nitrogen pathways associated with oyster reefs at intermediate depths in Chesapeake Bay, USA: phytoplankton use dissolved inorganic nitrogen for their growth (A), oysters and other reef-associated organisms filter phytoplankton and other particulate organic matter from the water column (B), some of the associated nitrogen is incorporated into organisms and some is deposited on the surface of the sediments (C), and, given the right conditions, a portion of the nitrogen in these bio-deposits is transformed into nitrogen gas (D) which diffuses out of the sediments back to the atmosphere (E) where it is no longer available to phytoplankton for growth (diagram adapted from Newell et al. 2005)

Legend

----- Transfer of Materials ---- Diffusion of materials


Microbial Mediated Reactions

Source: Assessment of Oyster Reefs in Lynnhaven River as a Chesapeake Bay TMDL Best Management Practice

Sanctuary Reefs

- Closed to harvesting
- Allow maximum reproduction
- Expected to increase abundance of adult oysters

- Expect larvae to settle within and without the sanctuary thereby expanding the reef
- Accelerates greater disease resistance by selective breeding the oysters that survive and reproduce

Traditional BMPs do not remove 100% of the nutrients

 With nitrogen removal efficiency at 20% for most BMPs, allowing 80% of nitrogen to pass downstream

 Sanctuary Reefs would help remove some of this passed-through nitrogen by polishing the water

- This is a proposed method for nitrogen polishing from the waters
- Assist with compliance with the Chesapeake Bay TMDL
- Based solely on the ability of oyster reefs to remove nitrogen from the water column by the process of nitrification/denitrification
- Not intended to replace traditional stormwater BMPs but act as a creditable polishing BMP
- Phosphorus removal is not included in the request at hand

Reef would be created by placing oyster shells on substrate

Spat-on-shell added to maintain healthy reef

 Monitored for overall health and nitrogen removal efficiency

- Measure nitrogen in relation to oyster density and biomass
- Measure nitrification/denitrification rates at selected reef sites for 15-18 months
- Submit results to the Commonwealth of Virginia and EPA, Region 3
- Establish a permanent (non-provisional) nitrogen removal rate

Other Issues

- Provide ancillary benefit to harvestable reefs by providing disease resistant wild spat to nearby sink reefs
 - Sink reefs are produced from source reefs due to fluctuations in tides and currents during spawning periods
 - Sink reefs can provide more nitrogen removal benefits on these other reefs
- Provide ancillary benefit by serving as fish and other aquatic life safe zones

- POTENTIAL ISSUES IMPEDING SANCTUARY REEF USE AND PROPOSED SOLUTIONS
 - Oyster mortality monitor and add more spat-on-shell

• Spat-on-shell – commercially available and potentially by future City of Virginia Beach

facility

 Cownose Ray and Blue Crab predation – monitor and add a bounty on ray tails; monitor and selective harvesting of Blue Crabs

Poaching – monitor and enforce no harvest zones
by City marine police

 Planting oyster shell for restoration of the Lynnhaven River. Photograph provided by USACE-Norfolk.

- Lynnhaven River has 63 acres of sanctuary reefs by the end of 2014.
- Sanctuary Reefs were constructed by USACE, City of Virginia Beach, Chesapeake Bay Foundation and Lynnhaven NOW.
- All of these reefs exceeded the Goal Implementation Team thresholds for adult oysters density and biomass.

Table ES-1. Tier 1 Tributaries and Restoration Targets					
Tier 1 Tributaries/Areas	Restoration Target (Acres)				
Maryland					
Severn River	190 - 290				
South River	90 – 200				
Lower Chester River	500-1,100				
Lower Eastern Bay	700 - 1,400				
Upper Eastern Bay	800 - 1,600				
Lower Choptank River	1,400 - 2,800				
Upper Choptank River	400 - 800				
Harris Creek	300 - 600				
Little Choptank	400 - 700				
Broad Creek	200 - 400				
St. Mary's River	200 - 400				
Lower Tangier Sound	800 - 1,700				
Upper Tangier Sound	900 - 1,800				
Manokin River	400 - 800				
Virginia					
Great Wicomico River	100 - 400				
Lower Rappahannock River	1,300 - 2,600				
Piankatank River	700 - 1,300				
Mobjack Bay	800 - 1,700				
Lower York River	1,100 - 2,100				
Pocomoke/Tangier Sound	3,000 - 5,900				
Lower James River	900 - 1,800				
Upper James River	2,000 - 3,900				
Elizabeth River	200 - 500				
Lynnhaven River	40 - 150				

Existing Healthy Reefs in Virginia Beach

Alanton Reef Humes Marsh Reef

Sanctuary Reefs as BMPs – Cost/Pound/Year

CONSTRUCTION COST FOR REMOVAL OF TOTAL NITROGEN (TN)				
BOAT PUMP OUTS	\$80			
STREET SWEEPING	\$2,500			
BIORETENTION BASIN	\$2,500			
SANCTUARY OYSTER REEFS	<u>\$1,350</u>			
WET PONDS	\$2,000			

QUESTIONS?

Steve McLaughlin, PE Stormwater Operations Manager 757-385-1470 smclaugh@vbgov.com

Sue Kriebel, PE Water Resources Engineer 757-385-4131 skriebel@vbgov.com

