Characterizing forage fish distribution and schooling in Maryland tributaries

Applications of high-resolution sonar imaging

Katie Lankowicz¹, Hongsheng Bi¹, Dong Liang¹, Chunlei Fan²

¹Chesapeake Biological Laboratory – University of Maryland Center for Environmental Science ²Patuxent Environmental & Aquatic Research Laboratory – Morgan State University

Background

- Schooling is an important characteristic of many forage fish
- Little information available on forage fish school distribution at fine-scale spatial resolutions
- Descriptive metrics of school spatial distribution may illuminate underlying environmental and behavioral drivers of overall spatial distribution pattern
 - Addressing this gap can assist in assessing density and spatial distribution of pelagic populations

Sonar imaging

Sonar imaging

Study area

Previous results: density and distribution

Fisheries Research 226 (2020) 105520

Contents lists available at ScienceDirect

Fisheries Research

Sonar imaging surveys fill data gaps in forage fish populations in shallow estuarine tributaries

Katelynn M. Lankowicz^a, Hongsheng Bi^{a,*}, Dong Liang^a, Chunlei Fan^b

Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, MD, 20688, USA

De Patuxent Environmental and Aquatic Research Laboratory, Morgan State University, St. Leonard, MD, 20685, USA

Research objectives

- Seasonal trends in forage fish school morphology
 - Number of schools and total number of fish in study area
 - Number of individual fish per school
 - Length of schools (meters)
- Comparison of school morphology and spatial distribution between river and creek habitats
 - Basic morphology (number of schools, etc.)
 - Bathymetry at point of observation
 - Proximity to nearest neighbor
- Determine clustering pattern through statistical analysis

Processing

Processing

Research objectives

- Seasonal trends in forage fish school morphology
 - Number of schools and total number of fish in study area
 - Number of individual fish per school
 - Length of schools (meters)
- Comparison of school morphology and spatial distribution between river and creek habitats
 - Basic morphology (number of schools, etc.)
 - Bathymetry at point of observation
 - Proximity to nearest neighbor
- Determine clustering pattern through statistical analysis

Number of schools

Number of individuals/ school

Min: 1 Median:36 Mean: 68 Max: 3157

Min: 1 Median: 51 Mean: 124 Max: 5387

Length of schools

Min: < 1m Median: 2.2m Mean: 2.9m Max: 27.4m

Min: < 1m Median: 2.5m Mean: 3.3m Max: 107.1m

Research objectives

- Seasonal trends in forage fish school morphology
 - Number of schools and total number of fish in study area
 - Number of individual fish per school
 - Length of schools (meters)
- Comparison of school morphology and spatial distribution between river and creek habitats
 - Basic morphology (number of schools, etc.)
 - Bathymetry at point of observation
 - Proximity to nearest neighbor
- Determine clustering pattern through statistical analysis

Number of schools

Number of individuals/ school

Length of schools

Length and size of schools

Bathymetry

Bathymetry

Proximity to nearest neighbor

Research objectives

- Seasonal trends in forage fish school morphology
 - Number of schools and total number of fish in study area
 - Number of individual fish per school
 - Length of schools (meters)
- Comparison of school morphology and spatial distribution between river and creek habitats
 - Basic morphology (number of schools, etc.)
 - Bathymetry at point of observation
 - Proximity to nearest neighbor
- Determine clustering pattern through statistical analysis

Clustering of schools

 Preliminary results indicate that schools occur in clusters; results are statistically significant for all sampling days and transects in 2016.

Conclusions

- High inter-annual variation in observed population size, trends upwards as summer season progresses
- Most observed schools had fewer than 100 fish and were found in waters 2-6m deep
- Number of forage fish observed in the three creeks was 13 times larger than the number of forage fish observed in the river channel
 - In creeks: More schools, more individuals per school, shallower water, closer spacing within and between schools
- Schools occur in clusters within habitat area and are not evenly or randomly dispersed (preliminary result)

Next steps

- Assist in developing machine learning methods to enumerate individual fish per frame, cut down on processing time
 - 4 total years of data, only 2 processed so far
- Examine patterns of spatial distribution and abundance across multiple spatial scales
- Bayesian approach matrix variate Gaussian graphical modeling
 - Multivariate, multi-scale species distribution modeling

Acknowledgments

Dr. Hongsheng Bi

Dr. Chunlei Fan

Dr. Dong Liang

Dr. Suzan Shahrestani

Dr. Gang Lin

Dr. Libin Zhang

Dr. Linlin Wang

Rob Nilsen
Zane Campbell
Nathan Hirtle

: @KatieLankowicz, @BiLabCBL

Acknowledgments

Dr. Hongsheng Bi

Dr. Chunlei Fan

Dr. Dong Liang

Dr. Suzan Shahrestani

Dr. Gang Lin

Dr. Libin Zhang

Dr. Linlin Wang

Rob Nilsen
Zane Campbell
Nathan Hirtle

: @KatieLankowicz, @BiLabCBL

Content-based image classification

- Limited morphological detail in ARIS images, relatively weak signal, highly variable image content and structure, variation in resolution from near to far field, disjointed beam pattern
- 3-module solution:
 - Convert ARIS files to image files
 - Classify images to categories based on contents using CNN
 - Image processing and enumeration

Content-based image classification

