Climate Resiliency Workgroup Conference Call

MARYLAND'S CLIMATE: VARIABILITY AND CHANGE

Phillip Stratton, Assistant State Climatologist for Maryland
University of Maryland at College Park, MD

The plots below show the average wind direction 500 to 4000 m above ground level. The direction is based on the north-south and east-west vector components provided by the wind profilers. The lower and upper dashed black line represent sunrise and sunset respectively.

Altitude	Piney Run	HU-Beltsville	Horn Point
0.5 km	WHAT I AM I JA SOND	BEOT 13 BEOT 13 AS OND	20 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1.0 km	STANAN JASOND	D O D A S O N D	20 OF THE PROPERTY OF THE PROP

JEMAMJJASOND

1.0 km

J F M A M J J A S O N D

Green=Low to moderate; Yellow=Moderate to high;

0.5 km Wind Climatology

0.5 km Wind Climatology

Monthly Surface Winds Near (~7mi) Horn Point

Distribution of Stations With 100+ Years Observation

55 stations with 100+ years between first $T_{\text{max}}/T_{\text{min}}$ observation and last.

Distribution of Stations With 100+ Years Observation

65 stations with 100+ years between first precipitation observation and last.

Distribution of Stations With 100+ Years Observation

65 stations with 100+ years between first precipitation observation and last.

Observed Seasonal Variation of Precipitation and Trend 1895-2019

Observed Seasonal Variation of Precipitation and Trend 1895-2019

Observed Seasonal Variation of Stream Flow and Trend 1895-2019

CATCHMENT AVERAGED MONTHLY RUNOFF **OBSERVED MONTHLY MEANS** R. Delavare at Trenton, NJ, 1912-2010 R. Potomac at Point of Rocks, MD, 1895-2010 R. James at Cartersville, VA, 1899-2010 R. Roanoke ar Roanoke Rapids, NC, 1912-2010 R. Wateree Nr. Camden, SC, 1929-2010 R. Savannah ar Augusta, GA, 1883-2010 R. Altamaha at Doctortown, GA, 1931-2010 Runoff, mm/dy

East Coast Rivers: Observed Seasonal Variations of

Runoff and Trend

- Maximum precipitation in summer
- Minimum streamflow in Summer
- Summers getting drier with spring and fall getting wetter
- No observable trends in monthly streamflow

Annual Seven-Day Low Stream Flow Trends
Stations with >= 30 Years observations

Increase in groundwater

From greater recharge

1.816

1.510

1.204

0.898

-0.020

-0.327

-0.633

-0.939

• More extreme

o.592 ()
flows from higher
o.286 ()
intensity storms

Seven-Day Low Streamflows 1940–2014

Annual Precipitation Trends

Trend in Precipitation Events >= 2"

Trends in Precipitation Events >= 2"

Distribution of Stations With 100+ Years Observation

Quantile Regression

Makes no assumptions about the distribution of the residuals.

Is more robust to outliers.

- Divide the Landsat record into 5-year intervals advancing by one-year increments (1984-1988, 1985–1989, 1986–1990, etc.)
 - Human activity such as urbanization and power generation
 - Influence of ocean water on the water temperature

CONCLUSIONS:

- Mid-Atlantic Coast states enjoy beautiful climate with seasonal maximum of precipitation in the summer and minimum in the fall.
- Global warming 1895-2010 has been accompanied by a decrease in Summer and increase in fall and winter precipitation.
- In addition to an overall increase in precipitation, heavy precipitation events are increasing as well.
- Quantile regression trend analysis can provide far more detailed information with respect to specific quantities in question.
 - This may be particularly useful for water managers who are more concerned with extreme values rather than the averaged one
- Quantile regression analysis can help build a comprehensive picture of climatic variables in terms of their variation over time at different magnitude/frequency
- We're data rich and resource/project poor. Help us help you.

Thank You!

www.atmos.umd.edu/~climate

(301) 405 - 7223

climate@umd.edu