Generalized Additive Model (GAM) Development Briefing: Application to Tidal Water Quality

Water Quality GIT Oct. 13, 2015

Rebecca Murphy (UMCES at CBPO)
Elgin Perry (statistical consultant)
Jeni Keisman (USGS)

Tidal Data Analysis: Where it fits

Tidal Water Quality: Current Approach

 Seasonal Kendall used by CBP, MDDNR and VADEQ since 1990s for tidal water quality trend analysis

Beneficial features:

- Allows for identification of monotonic trends
- Good for outliers
- Does not require a distributional assumption

Seasonal Kendall-based trend maps (Presented to WQGIT March 2015)

http://www.chesapeakebay.net/maps

Why a method change?

Based on lessons learned from current approach, looking for a method that:

- Is flexible enough to represent many possible patterns, including trends that have changed direction over time
- Is able to model non-linear relationships
- Generates a statistical confidence measure
- Can be used to test "factors affecting trends"

GAMs: Steps Towards Implementation to Tidal Chesapeake Bay

Continue R&D applications to explaining trends project

Generalized Additive Model: A response variable is modeled as the sum of multiple functions of explanatory variables

```
Water quality = linear(date) + s(date) + s(doy) + Interaction(date, doy)
```

Generalized Additive Model: Represents a response variable as the sum of multiple functions of explanatory variables

Water quality = linear(date) + s(date) + s(doy) + Interaction(date, doy)

Functions can be linear

Smoothlyvarying nonlinear "spline" functions And multidimensional smooth functions

TP = linear(date) + s(date) + s(doy) + Interaction(date, doy)

GAM for TP-Surface at TF5.5A

Example 1: A smooth seasonal cycle, but the overall trend is a linear decrease.

Secchi = linear(date) + s(date) + s(doy) + Interaction(date, doy)

GAM for SECCHI-Surface at CB4.3E

Example 2: A significant, smoothly-varying pattern over time.

CHLA = linear(date) + s(date) + s(doy) + Interaction(date, doy)

GAM for CHLA-Surface at CB6.2

Example 3: shape of the seasonal cycle is changing over time.

GAM Version 1: Full Tidal Application

- Fit GAMs to tidal data from 1999-2014
 - Both mainstem and tributary stations
 - Secchi disk depth; Surface and Bottom TN, TP, DO, and chlorophyll-a
- Conducted GAM/Seasonal Kendall comparison for mainstem
 - Are the overall trend results going to change with GAMs?: NO
 - Any systematic differences appear to be when the data is non-linear
- Developing ways to present and evaluate full set of output

GAM Version 1: Layers of Information

- 1. Is there a trend over a given time period?
- 2. What does that pattern look like over time?
- 3. Is there a seasonal difference in the temporal patterns?

Question: How can we most effectively share these layers of information without being overly complicated?

Layers of output:

- 1. Is there a trend over a given time period?
 - Identification and significance of long-term trends
 - Slope and direction of a trend

```
Example: TF1.4 TP Surface 1999-2014
```

```
Baseline log mean = -1.90

Current log mean = -2.26

Estimated log difference = -0.36

Std. Err. log difference = 0.060

Confidence interval for log difference = (-0.48, -0.25)

Difference p-value = <0.0001

Percent Change Estimate = -30.5 %
```

GAM Trends for Surface Total Phosphorus in the Chesapeake Bay: 1999-2014

Layers of output:

2. What does the trend look like?

- Pattern and confidence bounds on long-term temporal pattern
- Significance of explanatory variables

GAM for TP-Surface at TF1.4

Example: TF1.4 TP Surface 1999-2014 GAM output

Source	edf	F-stat	p-value
linear(date)	1	5.71	0.018
s(date)	3.91	6.29	<0.0001
s (doy)	3.89	8.84	<0.0001

AIC 10.4 root mean-square error = 0.24

adjusted r-square = 0.36

Layers of output:

3. Is there a seasonal difference in the temporal trend?

GAM Trends for Surface Chlorophyll-a

Layers of output:

3. Is there a seasonal difference in the temporal trend?

Layers of output:

3. Is there a seasonal difference in the temporal trend?

GAM Trends for Surface Chlorophyll-a in the Chesapeake Bay: 1999-2014

Layers of output:

3. Is there a seasonal difference in the temporal trend?

GAM Trends for Surface Chlorophyll-a in the Chesapeake Bay: 1999-2014

Layers of output:

3. Is there a seasonal difference in the temporal trend?

GAM Version 1: Layers of Information

- 1. Is there a trend over a given time period?
- 2. What does that pattern look like over time?
- 3. Is there a seasonal difference in the temporal patterns?

Next Steps

- Finish examining Version 1 results (2015)
- GAM tool in R (1st draft end 2015)
- Version 2 GAM approach for tidal stations (2016)
 - Finalize flow as explanatory variable
 - Application to 1985-present
- Applications for factors explaining trends (preliminary results 2016-'17):

Extra

Seasonal Kendall and GAM features/applications side-by-side	SK	GAM V1	Future GAM versions
Temporal trend identification			
Identification and significance of long-term trends	X	X	X
Slope and direction of a trend		X	X
Pattern and confidence bounds on long-term temporal pattern		X	X
Significance of explanatory variables (e.g., date, season)		X	X
Incremental periods with significant trends		X	X
Accounting for residual temporal autocorrelation			X
Application			
Trends in mainstem and tributary 1999-2014 water quality data	X	X	X
Account for step changes and varied detection limits (i.e., use all data 1985-present)			x
Flow as an explanatory variable (optional)		xc	X
Include other explanatory variables for hypothesis testing			X

^a Sen slope test performs this for the SK approach

^b SK is applied to pre-1999 using data censoring and block-approaches

^c An approach is implemented, but some modifications are needed