
Impacts of Sea Level Rise
on Hypoxia—progress report

Pierre St-Laurent1,
M.A.M. Friedrichs1

1Virginia Institute of Marine Science

Modeling workgroup quarterly rev.
February 19, 2019



Overview

We are investigating the impacts of sea level rise (SLR) on hypoxia using
different models of the bay.

The experiments assume realistic conditions for the period 1991–1995 and
use the same riverine forcing (Phase-6 CXXBASE).
We consider four scenarios:

1. No SLR: base run / control
2. SL raised by 0.17 m at the oceanic model boundary (2025)
3. SL +0.50 m (2050)
4. SL +1.xx m (2100)
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Experiments completed / ongoing
Model ChesROMS-ECB:

I Control 1991–2000
I +0.17 m 1991–2000

Model UMCES-ROMS (physics) + RCA (biology):
I Control 1991–1995 (physics)
I Control 1991–1995 (biology)
I +0.17 m 1991–1995 (physics) (completed Feb.13)
I +0.17 m 1991–1995 (biology) (completed Feb.17)

Model SCHISM:
I Control 1991–1995 (physics)
I Control 1991–1995 (biology) (ongoing)

We will analyze the +0.17m scenario fully before moving on to +0.50 m and
+1.xx m.
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Comparing the model results

In the following slides we compare:

1. Model geometry (grid)

2. Physics, including comparisons with data

3. Dissolved oxygen (DO), including comparison with data

4. Changes in physics caused by SLR of +0.17m (2025)

5. Changes in DO caused by SLR of +0.17m (2025)
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1. Comparing the model geometry
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SCHISM distinguishes itself by higher resolution and sharper channels,
notably the Rappahannock Shoal channel.
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1. Comparing the model geometry
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The two ROMS grid are very similar in extent and bathymetry. Differences
are mostly noise, with few exceptions.
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2. Comparing the model physics: Bottom salinity
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reproduces bottom S well.
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fresher than data in main
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2. Comparing the model physics: Bottom salinity
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2. Comparing the model physics: S in main stem
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Both ROMS models underestimate bottom depths in main stem (smoothing)

Although ChesROMS-ECB reproduces bottom and surface S relatively well,
its halocline is too high

UMCES-ROMS reproduces halocline better, but it is 1–2 psu too fresh near
bottom/surface
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2. Comparing the model physics: S in main stem
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2. Comparing the model physics: Estuarine circ.
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2. Comparing the model physics: Estuarine circ.
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3. Comparing dissolved oxygen: Bottom DO

0

1

2

3

4

5

6

7

8

9

10

Jul Jul

B
ot

to
m

 D
O

 (m
g 

L-1
)

ChesROMS-ECB UMCES-ROMS-RCA

Created monthly
climatology for
1991–1995 (models
and WQMP data)

Seasonal cycle very
similar between
models (not shown)

← Max hypoxia (July)

Similar patterns, but
ChesROMS-ECB
overestimates DO in
lower bay

13 / 20



3. Comparing dissolved oxygen: Main stem
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Both models underestimate bottom depths in main stem (smoothing)
Similar spatial distributions with minimum DO in upper main stem (38.8◦N)
Oxycline is too high in RCA
ChesROMS-ECB overestimates DO in lower bay
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3. Comparing dissolved oxygen: Hypox. volume
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(Left) Models reproduce timing of hypoxia and hypoxic volume relatively well

(Right) Annually-integrated hypoxic volume
High/low years are reproduced qualitatively, but models exaggerate
year-to-year variations (especially ChesROM-ECB)
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4. Changes in physical fields with SLR = +0.17m
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(Left) ∆S ∼ 0.3 psu
(Right) ∆S ∼ 0.35 psu
for +0.17 m

Hong & Shen 2012:
∆S ∼ 0.5 psu for +0.30 m

Hilton et al. 2008:
∆S ∼ 0.5 psu for +0.20 m

Consistent with literature
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4. Changes in physical fields with SLR = +0.17m
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Change in salinity along main stem, average 1991–1995

(Left) ∆S ∼ 0.3 psu, mostly uniform with depth
(Right) ∆S ∼ 0.35 psu, also ∼uniform with depth
(i.e., similar to previous slide showing bottom salinity)

Maximum changes occur within the halocline (depth ∼ 5 m)
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5. Changes in DO with SLR = +0.17m
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5. Changes in DO with SLR = +0.17m

-0.2 -0.1 0 0.1 0.2
Change in july bottom DO with +0.17m

-0.2 -0.1 0 0.1 0.2
Change in july bottom DO with +0.17m

D
ep

th
 (m

)

Latitude (oN)

0

5

10

15

20

25

30

35
37.6 37.8 38 38.2 38.4 38.6 38.8 39

Latitude (oN)
37.6 37.8 38 38.2 38.4 38.6 38.8 39

ChesROMS-ECB UMCES-ROMS

Change in DO along main stem, average July 1991–1995

Both models predict↘ in the pycnocline (5 m depth)

Below 10 m depth, the models show a qualitatively different response
(even though they used the same rivers, they simulated the same exact
years, and their physical response to SLR (∆S) was similar (see slide 17).)
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Next steps

I UMCES-ROMS-RCA: Analyze the case with +0.17 m (completed
Feb.17) in more detail and compare with ChesROMS-ECB

I DO budgets for the main stem, to understand how the modeled DO
responds to SLR (and why)

I Simulate the cases +0.50 m and +1.xx m (2050 and 2100, resp.)

I Investigate the linearity of the response to SLR
(and potential complications)

I SCHISM: Follow-up with Joseph’s team once their runs are completed
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Appendix
slides from CHAMP meeting in Annapolis (Nov.13, 2018)

0 / 0



Sensitivity experiment: ∆SL = +0.17 m, 1991–1995
In the next slides I will present results from a
sensitivity experiment where the sea level
was increased by 0.17 m at the oceanic
boundary of the model→

∆SL = +0.17 m is the estimated change
between 1995 and 2025. We use Phase-6
(CXXBASE) as the riverine dataset.

We provide a 5-year period to the model
(1986–1990) for it to acclimate to the higher
SL, and then analyze the next 5 years
(1991–1995).

Note that the model setup prescribes monthly
climatological S,T ,DOsat (S,T ) at the
oceanic boundary. The same climatology is
used in all model runs.
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Sensitivity experiment: ∆SL = +0.17 m, 1991–1995

These experiments do not
attempt to predict the loss of
land associated with ∆SL.
They assume that the
coastlines are armored and
unchanged.

The model’s response to ∆SL
at the oceanic boundary is
simply an offset in SL
throughout the bay. The
gradients in SL and the
barotropic circulation are
largely unaffected→ -0.05
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Sensitivity experiment: ∆SL = +0.17 m, 1991–1995
Changes in annual volume are small,
±18% at most, and largest for case
DO < 0.2 mg L−1

Less hypoxia in most years,
but not all years (see 1994)

Daily timeseries (below): volume is
∼always smaller during
1991,1992,1995.
Years 1993,1994: both + and −

Table: Change in annual vol. (AV) caused
by ∆SL = +0.17 m (DO < 2 mg L−1)

Year AV ∆AV ∆AV
km3 day km3 day %

1991 715 −18 −3
1992 447 −32 −7
1993 1309 −4 0
1994 1169 +11 +1
1995 420 −13 −3
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