Impacts of Sea Level Rise on Hypoxia—progress report Pierre St-Laurent¹, M.A.M. Friedrichs¹ ¹Virginia Institute of Marine Science Modeling workgroup quarterly rev. February 19, 2019 #### **Overview** We are investigating the impacts of sea level rise (SLR) on hypoxia using different models of the bay. The experiments assume realistic conditions for the period **1991–1995** and use the same riverine forcing (Phase-6 CXXBASE). We consider four scenarios: - No SLR: base run / control - 2. SL raised by 0.17 m at the oceanic model boundary (2025) - 3. SL +0.50 m (2050) - 4. SL +1.xx m (2100) ## **Experiments completed / ongoing** #### Model ChesROMS-ECB: - Control 1991–2000 - ▶ +0.17 m 1991–2000 #### Model UMCES-ROMS (physics) + RCA (biology): - ► Control 1991–1995 (physics) - Control 1991–1995 (biology) - ► +0.17 m 1991–1995 (physics) (**completed Feb.13**) - ► +0.17 m 1991–1995 (biology) (completed Feb.17) #### Model SCHISM: - Control 1991–1995 (physics) - ► Control 1991–1995 (biology) (ongoing) We will analyze the +0.17m scenario fully before moving on to +0.50 m and +1.xx m. #### Comparing the model results In the following slides we compare: - 1. Model geometry (grid) - 2. Physics, including comparisons with data - 3. Dissolved oxygen (DO), including comparison with data - 4. Changes in physics caused by SLR of +0.17m (2025) - 5. Changes in DO caused by SLR of +0.17m (2025) #### 1. Comparing the model geometry SCHISM distinguishes itself by higher resolution and sharper channels, notably the Rappahannock Shoal channel. #### 1. Comparing the model geometry The two ROMS grid are very similar in extent and bathymetry. Differences are mostly noise, with few exceptions. #### 2. Comparing the model physics: Bottom salinity Bottom salinity: Good metric to evaluate stratification and estuarine circulation Circles with + symbol are WQMP data, averaged over 1991–1995. Ideally the circles blend with modeled fields ChesROMS-ECB reproduces bottom *S* well. UMCES-ROMS is 1–2 psu fresher than data in main stem #### 2. Comparing the model physics: Bottom salinity SCHISM stands roughly in between the two ROMS models ## 2. Comparing the model physics: S in main stem Salinity along main stem, averaged 1991–1995 Both ROMS models underestimate bottom depths in main stem (smoothing) Although ChesROMS-ECB reproduces bottom and surface *S* relatively well, its halocline is too high UMCES-ROMS reproduces halocline better, but it is 1–2 psu too fresh near bottom/surface 2. Comparing the model physics: S in main stem SCHISM reproduces the bathymetry of the main stem more accurately SCHISM is a bit too salty at 37.8°N, at bit too fresh at 38.6°N. Overall it is the most accurate of the three models. #### 2. Comparing the model physics: Estuarine circ. To compare the model circulations, we define 7 sections aligned with model grid and at same latitudes. At each section, calculate Inflow (northward flow) and Outflow (southward flow) # 2. Comparing the model physics: Estuarine circ. Thick lines: ChesROMS-ECB Thin lines: UMCES-ROMS (average 1991–1995) Same river forcing Similar circulation Inflow 18% higher in ChesROMS-ECB #### 3. Comparing dissolved oxygen: Bottom DO Created monthly climatology for 1991–1995 (models and WQMP data) Seasonal cycle very similar between models (not shown) ← Max hypoxia (July) Similar patterns, but ChesROMS-ECB overestimates DO in lower bay ## 3. Comparing dissolved oxygen: Main stem #### Dissolved oxygen along main stem, July (max hypoxia) Both models underestimate bottom depths in main stem (smoothing) Similar spatial distributions with minimum DO in upper main stem (38.8°N) Oxycline is too high in RCA ChesROMS-ECB overestimates DO in lower bay # 3. Comparing dissolved oxygen: Hypox. volume (Left) Models reproduce timing of hypoxia and hypoxic volume relatively well (Right) Annually-integrated hypoxic volume High/low years are reproduced qualitatively, but models exaggerate year-to-year variations (especially ChesROM-ECB) #### 4. Changes in physical fields with SLR = +0.17m # 4. Changes in physical fields with SLR = +0.17m Change in salinity along main stem, average 1991–1995 (Left) $\Delta S \sim$ 0.3 psu, mostly uniform with depth (Right) $\Delta S \sim$ 0.35 psu, also \sim uniform with depth (i.e., similar to previous slide showing bottom salinity) Maximum changes occur within the halocline (depth $\sim 5\,\text{m}$) #### 5. Changes in DO with SLR = +0.17m Change in **bottom DO** (average July 1991–1995) ChesROMS-ECB suggests that DO increases in the main stem by $\sim 0.05~\text{mg}~\text{L}^{-1}$ RCA does not show any increase in the main stem (white) # 5. Changes in DO with SLR = +0.17m Change in **DO along main stem**, average July 1991–1995 Both models predict \searrow in the pycnocline (5 m depth) Below 10 m depth, the models show a qualitatively different response (even though they used the same rivers, they simulated the same exact years, and their physical response to SLR (ΔS) was similar (see slide 17).) #### **Next steps** - ► UMCES-ROMS-RCA: Analyze the case with +0.17 m (completed Feb.17) in more detail and compare with ChesROMS-ECB - DO budgets for the main stem, to understand how the modeled DO responds to SLR (and why) - ► Simulate the cases +0.50 m and +1.xx m (2050 and 2100, resp.) - Investigate the linearity of the response to SLR (and potential complications) - SCHISM: Follow-up with Joseph's team once their runs are completed Appendix slides from CHAMP meeting in Annapolis (Nov.13, 2018) #### Sensitivity experiment: $\Delta SL = +0.17 \,\mathrm{m}$, 1991–1995 In the next slides I will present results from a sensitivity experiment where the sea level was increased by 0.17 m at the oceanic boundary of the model \rightarrow $\Delta SL = +0.17\,\text{m}$ is the estimated change between 1995 and 2025. We use Phase-6 (CXXBASE) as the riverine dataset. We provide a 5-year period to the model (1986–1990) for it to acclimate to the higher SL, and then analyze the next 5 years (1991–1995). Note that the model setup prescribes monthly climatological S, T, $DO_{sat}(S,T)$ at the oceanic boundary. The same climatology is used in all model runs. #### Sensitivity experiment: $\Delta SL = +0.17 \,\mathrm{m}$, 1991–1995 These experiments do not attempt to predict the loss of land associated with ΔSL . They assume that the coastlines are armored and unchanged. The model's response to ΔSL at the oceanic boundary is simply an offset in SL throughout the bay. The gradients in SL and the barotropic circulation are largely unaffected \rightarrow #### Sensitivity experiment: $\Delta SL = +0.17 \,\mathrm{m}$, 1991–1995 Changes in annual volume are small, $\pm 18\%$ at most, and largest for case $DO < 0.2\,\mathrm{mg}\;\mathrm{L}^{-1}$ Table: Change in annual vol. (AV) caused by $\Delta SL = +0.17\,\text{m}$ (DO $< 2\,\text{mg L}^{-1})$ | Less hypoxia in most | years, | |------------------------|--------| | but not all years (see | 1994) | Daily timeseries (below): volume is \sim always smaller during 1991,1992,1995. Years 1993,1994: both + and - | Year | AV | $\triangle AV$ | ΔAV | |------|---------|----------------|-------------| | | km³ day | km³ day | % | | 1991 | 715 | -18 | -3 | | 1992 | 447 | -32 | -7 | | 1993 | 1309 | -4 | 0 | | 1994 | 1169 | +11 | +1 | | 1995 | 420 | -13 | -3 |