

То:	Mark Dubin
From:	Jon Harcum
Date:	December 18, 2017, revised February 14, 2018
Subject:	CBP Technical Support: Producer Survey Recommendation Report

The partners of the Chesapeake Bay Program (CBP) developed and implemented a Framework that will guide improvements to the verification of BMPs reported annually for the purpose of demonstrating and evaluating progress toward achieving the goals of protecting and restoring the Chesapeake Bay. The purpose of this technical memorandum is to provide the Agriculture Workgroup (AgWG) a list of potential recommendations related to appropriate statistical metrics for the establishment of uniform evaluation standards for producer surveys as an alternative approach to agricultural best management practice (BMP) verification. In particular, this technical memorandum targets appropriate measures related to estimating the BMP extent (e.g., total number of acres, total linear feet); and is in response to CBP partnership's interest to develop and implement alternative approaches for the verification of agricultural BMPs historically and in the future.

Analysis

A previous technical memorandum developed by Tetra Tech is attached. The analysis in the attached technical memorandum was based on a survey conducted by Penn State University (PSU) and the Pennsylvania Department of Environmental Protection (DEP). In essence, farmers were mailed a conservation practice inventory form (or were provided access to an online form) to complete and submit to PSU. Approximately 10 percent of the responses from each county were then randomly selected for field verification by trained PSU Extension agents. PSU concluded that there was no systematic over- or under-reporting for nearly all BMPs with the exception of barnyard acres under E&S/NRCS plans and riparian buffers.

Tetra Tech further examined the data and computed the proportion correct (PC), hit rate (HR), and false alarm rate (FAR) for each reported BMP. The relatively high PC (71-97 percent) across most practices can be attributed to the large fraction of surveys where it was verified that the operation correctly reported that a practice was not in use. HR and FAR were more varied. Typically, low HR values are associated with higher FAR and vice versa. Low HR values indicate that surveys under-reported the number of BMPs while high FAR values indicate over-reporting. Tetra Tech compared the values of FAR and HR to the values identified in the AgWG decision from January 26, 2017 which states:

The AgWG approved the following proposed methodology for setting statistical confidence standards for BMPs submitted through alternative verification methods: use of a two-step process, wherein the first step requires a sample size greater than or equal to 20¹, a False Alarm Rate (FAR) threshold of 0.2 or below (upper 90%

¹ Note that the standard established by the Agricultural Modeling Subcommittee and the CBPO have been set at 30 data points as a minimum.

confidence limit value), and a Hit Rate (HR) threshold of 0.7 or greater (lower 90% confidence limit value). If the previous conditions are met, the second step of this process would correct for bias in the BMP quantity by using the ratio of Post-Agreement Rate (PAG)/Hit Rate (HR) (lower 90% confidence limit value). This recommendation will remain in place until modified by the AgWG at a future time based upon additional data to help inform these recommendations.

Applying the above thresholds for FAR and HR would eliminate 26 of the 30 BMPs considered in the producer survey conducted by PSU and DEP. Perhaps these results are expected since the initial data are collected through a producer survey and achieving consistency in producer responses is a known challenge. As pointed out in the PSU survey report, differences in survey responses and field verification by experts can result from inconsistent understanding of the questions to be addressed. Better results should result from better and consistent communication.

However, recall that the data evaluated in this technical memorandum are related to BMP extent (e.g., total number of BMP acres, total BMP linear feet) and not "counts" of BMPs. So while the January 26, 2017 AgWG decision was made on the broader overview of alternative BMP verification, it might be appropriate to consider the confidence interval associated with the state watershed- and/or county-wide estimates of total BMP acreage or linear feet.

PSU computed state watershed-wide estimates (including confidence intervals) for several of the BMPs using a 'mean difference' approach (see Table 1). The reported and expected results are the state watershed-wide estimates of BMP from the producer survey and corrected estimate based on field verification, respectively.

Practice	Reported Results	Expected Results	90% Confidence Interval Half Width	90% Confidence Interval Half Width as % of Expected	95% Confidence Interval Half Width	95% Confidence Interval Half Width as % of Expected
Nutrient Management Plans – Row Crops (Ac)	335,250	350,103	28,483	8.1	33,953	9.7
Enhanced Nutrient Mgt (ac)	97,562	82,303	36,414	44.2	43,407	52.7
Agricultural E&S Plans – Row crops (ac)	40,170	60,380	26,808	44.4	31,957	52.9
Conservation Plans – Row crops (ac)	173,481	229,636	104,998	45.7	125,163	54.5
Stream Bank Fencing (linear feet)	1,336,100	2,293,651	377,437	23.0	464,296	26.8
Watercourse Access Control (ac)	795	1730	444	60.8	588	69.2
Riparian Buffers (ac)	9,013	6,770	1,688	60.9	2,246	69.1

Table 1. State watershed wide estimates of BMP implementation.

PSU also computed the 95 percent confidence interval half width for the state watershed total of each BMP. Tetra Tech divided the 95 percent confidence interval half width by the expected result (see 95% Confidence Interval Half Width as % of Expected) and added corresponding values for the 90% confidence level. For example, 1.3 million feet of stream bank fencing was reported in the producer survey. Based on field verification, PSU estimates a total of 2.3 million feet of stream bank fencing with a +/-0.5 million (1.8-2.8 million) feet of stream bank fencing at TETRA TECH

the 95 percent confidence level. The +/-0.5 million feet of stream bank fencing is 26.8 percent of the expected results of 2.3 million feet of stream bank fencing.

Tetra Tech furthered PSU's analysis of state watershed-wide confidence intervals to include county-level totals of BMPs using a general linear model (GLM). Tetra Tech concluded that it was possible to compute state watershed- and county-level total BMP acreage estimates; and found that it may be possible to compute somewhat smaller state watershed-level confidence intervals with the GLM. The reader is referred to the attached technical information for further information about the GLM.

Recommendation

Based on the above analyses, the following candidate recommendations for a two-tiered approach are made for purposes of AgWG discussion. The first step would be to ensure that the data are of suitable quality:

- 1. Only the results from producer surveys that include follow-up, independent verification using a stratified random sample of the returned mail surveys may be used.
- 2. Any statistical adjustments made to the survey results only apply to the data set of returned surveys and cannot be used to extrapolate to non-respondents.
- 3. Follow-up verification must be made using a 10 percent (or greater) random sample for each stratum (e.g., county) and a minimum of two (2) samples per BMP and stratum².
- 4. The 90% confidence interval half-width cannot exceed the greater of 10% of the predicted total <u>or</u> 200 acres (or linear feet) for any state watershed-wide or stratum-specific estimate.

The second step would be to adjust the survey data based on field verification data. Adjustments could be made using either the mean-difference approach applied by PSU or by using the GLM approach described in the attached technical memorandum. While the PSU approach is simpler to apply, the GLM approach (Equation 3 in the attached) will yield a smaller standard error and therefore smaller confidence intervals.

Candidate recommendations for FAR and HR were considered but ultimately not included here for the reasons discussed earlier in this document. Note, the impact of recommendation #4 by comparing the PSU confidence intervals versus the thresholds of 10% of the predicted total or 200 acres for practices included in their survey by examining Table 1. PSU reported 95% confidence limits; Tetra Tech calculated the 90% confidence limits. As can be seen from the Table 1, all but one practice would be eliminated based on the 10% criterion at the 90% confidence level, whereas all would be excluded based on the 200-acre criterion.

If the AgWG approves the above, or some variant of the above, candidate recommendations, then the following general requirements are necessary to implement the procedure:

• A detailed verification data set which includes the county name, reported BMP acreage and verified acreage. For each BMP, a minimum of two observations are needed in each county per BMP.

TETRA TECH

² Variability in agricultural systems across the survey area may indicate a need for more samples per stratum.

• For each BMP, county- and state watershed-level BMP summary information that includes the number of returned surveys, the number of surveys with zero reported BMP acreage, the number of surveys with non-zero reported BMP acreage, and total reported BMP acreage for each county and the state overall.

After some experience is gained with this procedure, it may also be appropriate to relax the minimum sampling percentage and simply focus on the confidence interval half-width. This would allow states to reduce their verification costs.

То:	Mark Dubin
From:	Jon Harcum and Steve Dressing
Date:	March 7, 2017, revised March 17, 2017
Subject:	CBP Technical Support: Producer Survey Evaluations

Multiple methods exist to document the extent of non-cost-shared annual and multi-year structural best management practices (BMPs) as identified by the Chesapeake Bay Program Partnership's publication entitled "Strengthening Verification of Best Management Practices Implemented in the Chesapeake Bay Watershed: A Basin Framework."³ This technical memorandum provides an overview of a procedure that could be used to evaluate a self-certified assessment inventory (e.g., mail-in survey, online survey, etc.) that includes follow-up in-person verification using a stratified random sample of the returned producer surveys. The procedures described here could be extended to address follow-up independent verification that uses alternative sampling strategies for selecting surveys to verify.

This technical memorandum does not address selection of an appropriate survey tool (e.g., online versus mail-in), but the method described here can be used to evaluate any survey that meets the criteria described in the Summary and Discussion.

This technical memorandum assumes that independent field verification yields the truth about the presence or absence of BMPs, as well as their operation and maintenance. The specific methods for assessing the presence or absence of BMPs are not addressed by this technical memorandum.

1.0 Background

Penn State University (PSU) and the Pennsylvania Department of Environmental Protection (DEP) undertook an agricultural conservation practice inventory (survey) to capture data on visual and non-visual non-cost-share BMPs for reporting and crediting in the Bay model (PSU 2016). The survey methodology is described in briefing materials (DEP 2016b) and a methodology report (PSU 2016). In essence, farmers were mailed conservation practices inventory forms to complete and submit to PSU. Approximately 10 percent of the responses from each county were then randomly selected for field verification by trained PSU Extension agents. Results from farmer inventories were compared against in-field independent inventories to assess the accuracy of the method. Of an estimated 33,610 farms in Pennsylvania's portion of the Chesapeake Bay watershed, PSU sent inventories to approximately 20,000 farms. A total of 6,782 surveys were returned (34%) and approximately 10 percent of the responses (710 farms) were selected for on-site verification.

PSU concluded that there was no systematic over- or under-reporting for nearly all BMPs (Royer 2016). The exceptions to this are barnyard acres under E&S/NRCS plans and riparian buffers. These practices both showed systematic over-reporting. Because their analysis showed that the over-reporting of these particular practices is statistically significant, PSU believes that an

³ http://www.chesapeakebay.net/publications/title/strengthening_verification_of_best_management_practices_implemented_in_the

adjustment factor could be applied to adjust the cumulative dataset downward. PSU also believes that the systematic over-reporting of riparian buffer acres may be attributed to differences between the way the questions were asked in the farm survey regarding buffers and stream bank fencing, and how Extension agents were trained to record these answers during the on-farm visits.

Previously (Tetra Tech, 2016) reported on basic measures of statistical accuracy using proportion correct (PC), hit rate (HR), and false alarm rate (FAR) (see Table 1). The relatively high PC across most practices can be attributed to the large fraction of surveys where it was verified that the operation correctly reported that a practice was not in use. HR and FAR were more varied. This technical memorandum extends Tetra Tech's previous analysis to include a procedure that can be used to estimate state- and county-level acreages after adjusting for survey verification.

Practice	Subcategory	Proportion Correct (PC)	PC Range at 90% Confidence Level	Hit Rate (HR)	False Alarm Ratio (FAR)
	Row Crops	0.85	83-87%	0.77	0.13
	Pasture Acres	0.81	78-83%	0.62	0.19
	Hay Acres	0.80	78-82%	0.67	0.24
	Privately Funded Act 38 Row Crop Acres	0.93	92-95%	0.26	0.46
	Privately Funded Act 38 Pasture Acres	0.94	92-95%	0.14	0.60
	Privately Funded Act 38 Hay Acres	0.93	92-95%	0.09	0.69
	Privately Funded NRCS 590 Row Crop Acres	0.95	94-96%	0.21	0.68
	Privately Funded NRCS 590 Pasture Acres	0.97	96-98%	0.24	0.71
	Privately Funded NRCS 590 Hay Acres	0.95	94-97%	0.23	0.75
	Manure Management Plans on Row Crop Acres	0.84	82-86%	0.61	0.39
	Manure Management Plans on Pasture Acres	0.84	82-86%	0.49	0.40
	Manure Management Plans on Hay Acres	0.85	83-87%	0.60	0.43
	Advanced Nutrient Management	0.83	81-86%	0.35	0.69
E&S Plans	Row Crop Acres	0.90	89-92%	0.30	0.46
	Pasture Acres	0.92	91-94%	0.30	0.48
	Hay Acres	0.93	91-94%	0.27	0.44
	Barnyard Acres	0.96	94-97%	0.17	0.73
NRCS Plans (privately funded)	Row Crop Acres	0.81	79-84%	0.35	0.57
	Pasture Acres	0.86	84-88%	0.28	0.58
	Hay Acres	0.85	83-87%	0.31	0.58
	Barnyard Acres	0.94	92-95%	0.16	0.78
Stream Bank Fencing	Fencing Length (Ft.)	0.88	86-90%	0.71	0.15
	Distance from Stream to Fence (Ft.)	0.87	86-89%	0.74	0.19
	Public Funded Fencing (Ft.)	0.93	92-95%	0.69	0.25
	Privately Funded Fencing (Ft.)	0.87	86-89%	0.53	0.30
	Acres of Buffer	0.87	85-89%	0.70	0.19
	Acres of Privately Funded Buffer	0.87	85-89%	0.53	0.34

Table 1. Measures of survey accuracy.

Practice	Subcategory	Proportion Correct (PC)	PC Range at 90% Confidence Level	Hit Rate (HR)	False Alarm Ratio (FAR)
Riparian Buffers	Buffer Acres	0.71	68-73%	0.45	0.50
	Privately Funded Buffer Acres	0.77	74-79%	0.29	0.70
	Buffer Width	0.71	68-73%	0.48	0.49

2.0 Approach

Lumley (2010) proposes applying ratios or general linear models (GLMs) for adjusting survey results to account for under- or over-reporting. Because the author noted that GLMs will generally result in estimates with smaller confidence intervals, the GLM method was chosen for this technical memorandum. In this analysis, we used the R integrated suite of software facilities (R Core Team, 2016) and the "survey"⁴ package (Lumley 2004 and 2016). Note that similar analytical tools are available in SAS[®]. Advantages of using a survey-based analytical tool over traditional GLM tools include the abilities to correctly compute the standard errors for a variety of sampling strategies and to account for finite populations.

Selection and development of a model should consider the available data. Figure 1 displays the verified acreage as a function of self-reported acreage using the PSU/DEP verification data for row crops, and is typical of data sets for other BMPs in the PSU/DEP study related to acreage estimates. Although the PC is 85 percent, 371 of the correctly classified results are attributed to observations with zero reported and zero verified acreage (green circle). In Figure 1, there are 70 errors of omission, i.e., the observations in the blue rectangle, and 35 errors of commission, i.e., the observations in the blue rectangle. There is one observation with a reported acreage of 11,000 that appears to be an outlier relative to the other data.

Given the characteristics of the above data set (i.e., the large number of zero reported acreage), it is recommended to develop a general linear model that accounts for the zero and non-zero reported acreage separately. This can be achieved by using the model shown in Equation 1.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1 X_2$$
 Eq. 1

where

Y = the verified acreage, X₁ = indicator variable (0: reported acreage=0, 1: reported acreage>0), X₂ = reported acreage, and β_0 , β_1 , and β_2 = regression coefficients.

Equation 1 can be simplified by substituting in 0 and 1 for X_1 to yield Equation 2.

$$Y = \frac{\beta_0}{(\beta_0 + \beta_1) + \beta_2 X_2} \quad for X_1 = 0$$
 Eq. 2

As can be seen from Equation 2, $\beta_0 + \beta_1$ is the y-intercept and β_2 is the slope for non-zero reported acreage observations.

⁴ <u>https://CRAN.R-project.org/package=survey</u>

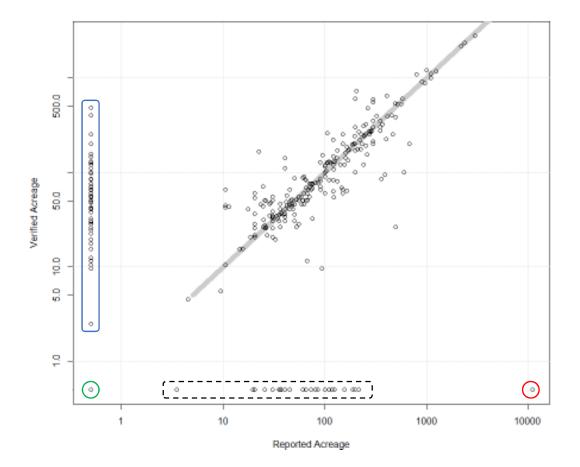


Figure 1. Verified acreage as a function of self-reported acreage for row crops. (All points are offset by adding 0.5 to facilitate plotting on a log scale. Points within blue rectangle: 70 observations with 0 reported acres and >0 verified acres. Points within black dashed rectangle: 35 observations with >0 reported acres and 0 verified acres. Points within green circle: 371 observations with 0 reported and verified acres. Points within red circle: 1 potential outlier with 11,000 reported and 0 verified acres. Grey line: 1:1 slope.)

Depending on the model fit, it may be appropriate to set the y-intercept term to zero. This can be achieved by introducing another indicator variable, X_0 , which is 1 for zero reported acreage and zero otherwise (i.e., the opposite of X_1). The general equation is

and the simplified model (substituting in for X_0 and X_1) is

$$Y = \frac{\beta_0}{\beta_2 X_2} \quad for X_1 = 0 \text{ and } X_0 = 1$$

$$For X_1 = 1 \text{ and } X_0 = 0$$

 Eq. 4

In either case (i.e., Equation 1 or 3), the value of β_0 will correspond to the mean verified acreage for surveys where the reported acreage is zero. The functions *survey::svydesign*, *survey::svyglm*, and *stats::predict* can then be used to compute the model coefficients and estimate the state and county level totals. In our application of *survey::svydesign*, we set the strata argument to county because the procedure to select samples from the returned surveys was based on a post-stratification based on county.

3.0 Application for Statewide Estimate

Results from applying the approach described in Section 2 to the DEP/PSU row crop data are presented here. Note that it is necessary to have two or more observations per county to apply the strata argument. For the row crop data, the single samples in the verification data set for Elk and Jefferson counties were aggregated with Clearfield county; Sullivan county with Columbia county; and Wyoming County with Luzerne.

The state level results and model fits are shown in Table 2 and Figure 2, respectively. The red line uses the Equation 1 model and the entire verification data set. The blue line also uses the Equation 1 model but excludes the outlier circled in Figure 1. Finally, the black line uses the Equation 3 model and excludes the outlier.

The Equation 3 model is preferred given the lower standard error and visual inspection of Figure 2. The state estimate of 364,850 acres has 90% confidence intervals of 347,508—382,191 acres. Note, that the 90% confidence intervals do not contain the reported acreage of 335,250.

	Estimated	Standard	90% Lower	90% Upper
Model	State Total	Error	Confidence Level	Confidence Level
Equation 1	418,463	33,342	363,615	473,310
Equation 1 (exclude outlier)	355,062	15,014	330,364	379,760
Equation 3 (exclude outlier)	364,850	10,542	347,508	382,191

Table 2. Statewide row crops estimation

The approach to developing a model should generally follow the same best practices that would be used for any regression. For example, if there were enough county-level samples taken, then it might make sense to evaluate whether to add county as a covariate. Adding county to the Equation 3 model and simplifying would result in county-specific β_0 values as shown in Equation 5 where *i* represents the county.

$$Y = \frac{\beta_{0,i}}{\beta_2 X_2} \quad for X_1 = 0 \text{ and } X_0 = 1$$

$$\beta_2 X_2 \quad for X_1 = 1 \text{ and } X_0 = 0$$

Eq. 5

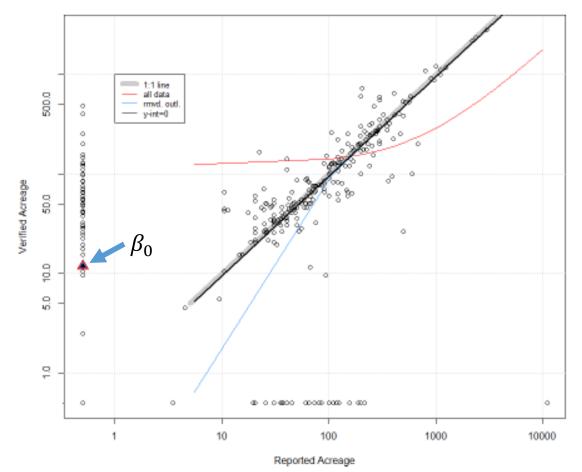


Figure 2. Verified acreage as a function of self-reported acreage for row crops together with model fits. (Fitted GLMs: Red line—Equation 1; Blue line—Equation 1, exclude outlier; Black line—Equation 3, exclude outlier.)

4.0 Hypothetical Extension to County Estimates

The Equation 3 model developed in Section 3.0 can also be applied to county level data. However, county level summary information was not available for this analysis. Therefore, a hypothetical county summary of row crop data was created for demonstration. Table 3 presents the hypothetical number of returned surveys, the number of surveys with zero reported acreage, the number of surveys with non-zero reported acreage, and total reported acreage for each county. Figure 3 presents the hypothetical predicted row crop acreage with 90% confidence intervals.

County	Returned Surveys	Surveys with Zero Reported Acreage	Surveys with Non- zero Reported Acreage	Total Reported Acreage
Adams	210	153	57	9,513
Bedford	191	153	38	2,072
Berks	96	38	58	3,952
Blair	124	86	38	5,228
Bradford	296	220	76	10,025
Cambria	57	57	-	-
Centre	229	105	124	11,050
Chester	172	86	86	6,457
Clearfield ^A	57	19	38	2,270
Clinton	67	29	38	2,113
Columbia ^A	191	162	29	1,050
Cumberland	191	124	67	20,453
Dauphin	105	38	67	11,315
Franklin	372	210	162	18,000
Fulton	105	67	38	4,227
Huntingdon	115	77	38	4,844
Indiana	38	38	-	-
Juniata	105	57	48	6,000
Lackawana	29	19	10	196
Lancaster	1,500	793	707	99,154
Lebanon	201	86	115	15,407
Luzerne ^A	76	67	9	74
Lycoming	240	173	67	5,137
McKean	38	29	9	150
Mifflin	124	57	67	5,146
Montour	115	77	38	7,726
Northumberland	124	86	38	8,750
Perry	201	115	86	15,649
Potter	67	67	-	-
Schuylkill	143	76	67	4,130
Snyder	162	143	19	9,809
Somerset	38	29	9	352
Susquehanna	267	181	86	2,369
Tioga	220	172	48	5,804
Union	143	76	67	6,700
Wayne	29	19	10	125
York	344	229	115	30,003
Total	6,782	4,213	2,569	335,250

Table 3. Hypothetical county summary for row crops.

^A Elk and Jefferson, Sullivan, and Wyoming counties were assumed to be aggregated with Clearfield, Columbia, and Luzerne counties, respectively.

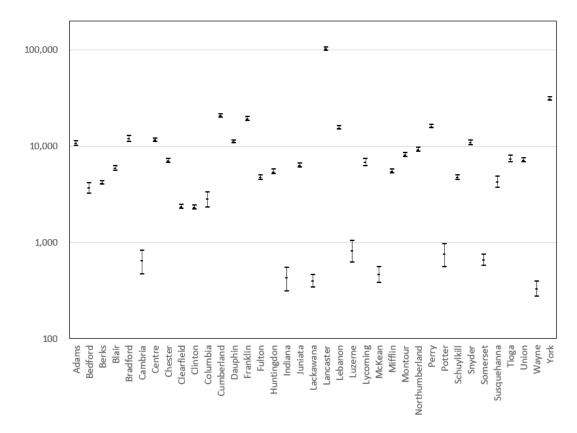


Figure 3. Hypothetical predicted row crop acreage with 90% confidence intervals.

5.0 Summary and Discussion

This technical memorandum presents an overview of a procedure that could be used to evaluate a self-certified assessment inventory (e.g., mail-in survey) that includes the follow-up independent verification using a stratified random sample of the returned mail surveys.

The general requirements for the procedure, as portrayed in this technical memorandum, include the following:

- A detailed verification data set which includes the county name, reported acreage and verified acreage. A minimum of two observations are needed in each county.
- County- and state-level summary information that includes the number of returned surveys, the number of surveys with zero reported acreage, the number of surveys with non-zero reported acreage, and total reported acreage for each county and the state overall.

With the above information, it is possible to compute overall metrics such as PC, HR, and FAR as well as state- and county-level total acreage estimates as illustrated in Table 4. The Agriculture Workgroup may want to consider both these metrics and the procedure presented here when developing criteria for determining the suitability of data collected from a producer survey.

Subcategory	Reported State Acreage	Proportion Correct (PC)	Hit Rate (HR)	False Alarm Ratio (FAR)	Adjusted State Acreage
Row Crops	335,250	85% (83-87%)	77% (73-81%)	13% (10-17%)	364,850 (347,508-382,191)

6.0 References

DEP. 2016a. Pennsylvania Department of Environmental Protection QAPP addendum verification program. Pennsylvania Department of Environmental Protection, March 4, 2016, 132 p. Accessed March 6, 2017. <u>http://www.chesapeakebay.net/documents/PA_BMP_Verification_QAPP_Final.pdf</u>

DEP. 2016b. Presentation: Pennsylvania farm conservation practice inventory Chesapeake Bay Ag workgroup July 14, 2016. Pennsylvania Department of Environmental Protection. (2016pafarmconservationpracticeinventory.pdf)

Lumley, T. 2004. Analysis of complex survey samples. Journal of Statistical Software 9(1):1-19.

Lumley, T. 2010. Complex Surveys: A Guide to Analysis Using R. Hoboken, N.J., John Wiley.

Lumley, T. 2016. survey: analysis of complex survey samples. R package version 3.31-5.

PSU. 2016. BMP verification methodology report. Penn State University.

R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical. Computing, Vienna, Austria. URL https://www.R-project.org/.

Royer, M. 2016. Email communication with Matt Royer (November 8, 2016), Director of the Agriculture and Environment Center, Penn State University.

Tetra Tech. 2016. Assessment of Penn State University survey of farms in Pennsylvania. Prepared for U.S. Environmental Protection Agency, Chesapeake Bay Program Office and Pennsylvania Department of Environmental Protection, by Tetra Tech Inc., Fairfax, VA. Accessed March 6, 2017. <u>http://www.chesapeakebay.net/channel_files/24633/tt_review_psu_survey_assessment_12-9-2016_final.pdf</u>