My General Observations/Thoughts

e Considering Sources and Sinks of Pollutants while balancing
resource impacts and restoration
e Edit Protocols to focus on source reduction and sink
enhancement
e Method of “restoration” should balance improvement
with impact to maximize overall benefit — may not be
“ideal” (and may need stone)
e Commodity driven implementation model is incomplete
and can lead to oversimplification
e Perspective influences measurement, we need to look for
standardization




Maximize Uplift viasnderstanding of Geomorphic Function

e Watershed Context and
Landscape Position

— Sources and Sinks
of Pollutants

e Functions

e Nutrient and Sediment
Processing

e Adapted and Impacted
Habitats

e Recommended Action Item:
Modify Design, Permitting
and Crediting Expectations
Based on Landscape Position
and Function
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Protocol 1: Looking at Sources — BEHI/BANCS

Location:

Observers:

Stream Type

Valley Type:
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Figure 4. BEHI Assessment Form (Rosgen 2006)

Methods for Estimating Near-Bank Stress (NBS)
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Improved Hyporheic Exchange

Well connected floodplain (Bank Height
Ratio (BHR) of < 1.0 — Assuming Bank e
Height is Bankfull Discharge) i * S fuststraamwidth + 5 fest

Convert to Mass: Hyporheic Box Mass
(tons)

e bulk density (very hard to sample) } PR

e Site specific sampling

Figure 3. Hyporheic box that extends the length of the restored reach

e Default = 125 pounds/cubic foot (> bank values)

Recommended Action Items: Standardize
Bank Height Measurement and Bulk
Density Procedure

Recommend Strategies for Increased
Hyporheic Exchange beyond Bank Height




Protocol 3: Credijtfor Floodplain Reconnection
" Volume - Sink

* Floodplain Connection Volume
e Credit for improved conditions compared to existing
e Requires comparison of existing and proposed hydraulic model
e Assumes floodplain acts as a wetland

e Volume of Annual Flow in Contact with the Floodplain

e Maximum Depth for Ponded Volume Receiving Credit is 1 foot -
This is a Hydraulic Modeling Challenge procedure is unclear.

o Effectiveness of the Connected Floodplain to Reduce Pollutants
(TSS, TN, TP) is Dependent on Hydraulic Detention Time

e Hydraulic Detention Time is Assumed to be Proportional to the
watershed to floodplain surface area ratio

e minimum ratio of 1% for full credit (prorated for ratios under 1%)

e This is inconsistent with Landscape Position Concepts




Protocol 3: Cre/d,.i--t"‘f'drr Floodplain Reconnection

e Percent of Annual TSS, TN and TP
removal based on:

e Floodplain Storage Volume
(watershed inches) — X-axis (Creates
confusion)

e Rainfall depth required to access

floodplain — Curves in graph
e % Annual Removal — Y-axis
e Compute Annual Loads (TSS, TN, TP)

e |Impervious and Pervious Loading
Rates provided

e Multiply Annual Loads by the
Removal Rates

Annual TN Removal

%of Annual Nitrogen Removal

Floodplain Storage Volume (Waterzhed Inches)

Figure 7. Annual TN removal as a function of 0.25 watershed inchs floodplain storage
rolume and 0.5 inch rainfall depth required to access the floodplain.

Table 6. Edge of Stream Unit Loading Rates for Bay
States Using CBWM v. 5.3.2
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Source: Output provided b\ Chris Brosch, CBPO, 1/4/2012, “No Action”
run (loading rates without BMPs), state-wide average loading rates, average
of regulated and unregulated MS4 areas




Protocol’3: Recommendations

Recommended Action Item: Revise/Edit Protocol 3 to allow for
evaluation of floodplains as storage areas

e Determine the sediment concentration entering the floodplain
e Incrementally model portion of the hydrograph that access the floodplain

e Using incremental information determine trapping efficiency (E) and floodplain
shear stress

e Determine the sediment discharge for each increment

e Determine rate of sedimentation(S;) for each time step

e Calculate the summation of each rate of sedimentation and duration of time step
e Annualize the mass of sedimentation of each storm

e Convert the mass of sediment into amount of nutrients removed from the system

e The deposition of sediment and nutrients in floodplains is well documented and
can result in a significant reduction in the amount transported downstream.

e The floodplain area to watershed area ratio is no longer needed.



