Post-Permit Project Inspection and Verification

Moderator: David Wood Panelists:

- Tom Schueler, CSN,
- Tim Schueler, Hazen and Sawyer
- Kathy Hoverman, KCI

Key Topics on Verification

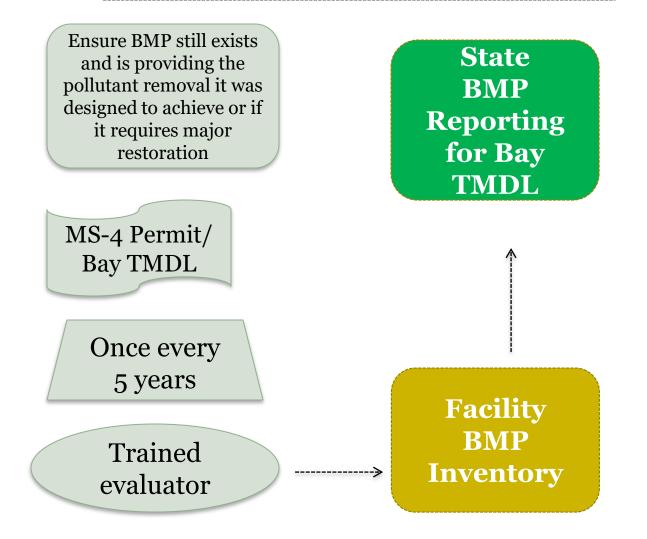
- Basics of CBP verification
- Can we standardize as-builts to assist in future verification
- Objectives for verification guidance on stream restoration projects
- A proposed framework and some initial reaction
- Perspectives from the field

Thanks to Tim, Kathy, Kip, Joe and Others for their initial feedback, but all errors, omissions or over-simplifications are Tom Schueler's fault

Need for BMP Verification

Chesapeake Bay Program A Watershed Partnership

Need to ensure that the practices we are claiming for pollutant reduction credit in the Bay (1) actually exist (2) are working as intended, and (3) are maintained properly over their design life



Credit Duration Depends on BMP Type

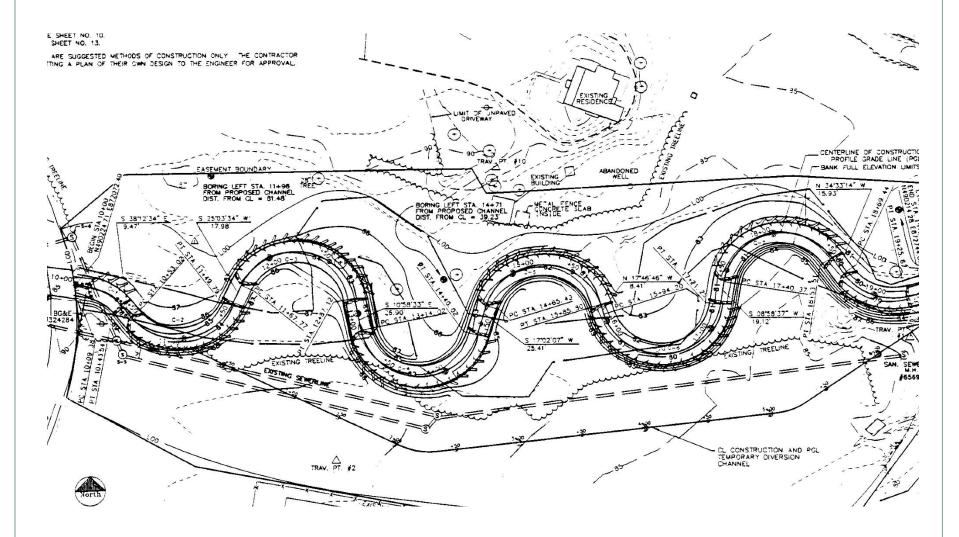
Stream Restoration 5 yrs Stormwater Retrofits 10 yrs **New LID Practices** 10 yrs Individual Nutrient Discharges 10 yrs Homeowner BMPs 5 yrs **UNM** Plans 3 yrs Street Cleaning 1 yr

Performance Verification

Verification of Stream Restoration Credit *

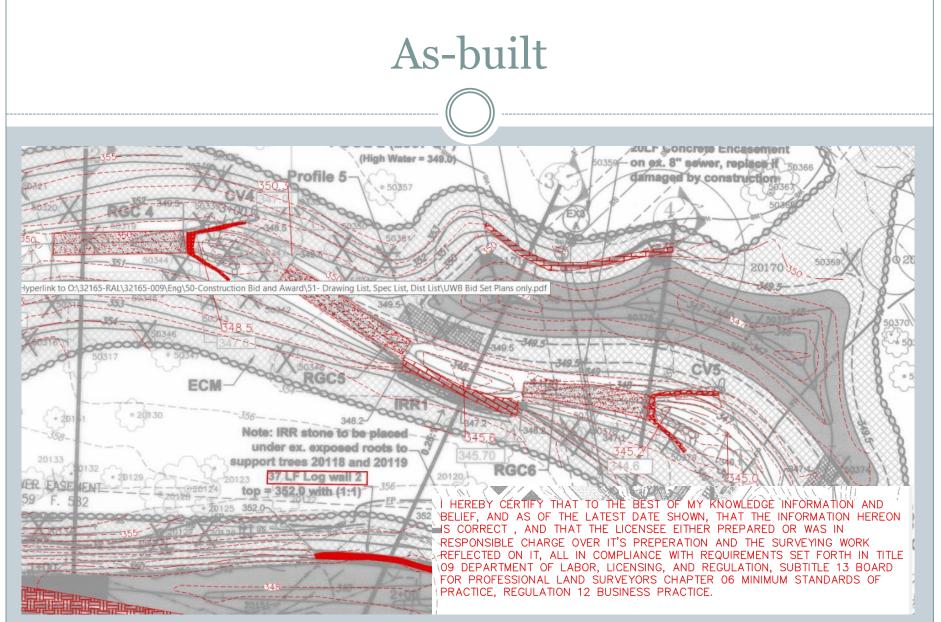
- Duration for the removal credits is 5 years
- Can be renewed based on a field performance inspection
- Duration of the credit is shorter than other urban BMPs, as these projects are:
 - o subject to catastrophic damage from extreme flood events
 - have requirements for 3 to 5 years of post-construction monitoring to satisfy permit conditions
- If a project does not pass inspection, there is 1 year to take corrective action prior to loss of credit

Post Construction Practice Certification *


- Prior to submitting the load reduction to the state tracking database, the installing agency will need to provide a post-construction certification that the stream restoration project:
 - \circ was installed properly,
 - o meets or exceeds its functional restoration objectives
 - o hydraulically and vegetatively stable,
- Post-construction inspection is done by designer or local inspector, subject to approval by state permit authority

Challenges

- Post construction monitoring is typically required for 3-5 years to satisfy permits – mostly for channel stability.
- To ensure projects are operating as designed, field inspections are needed to renew the credit 5 years after the permit expires
- No specific guidance exists on how to inspect and verify projects going forward


Is there a standard for project as-builts that could better support future verification efforts?

Stream as-built plans fall into 3 categories

- <u>No as-built: pr</u>ojects without any sort of "as-built" or other construction documentation rely on original design drawings.
- <u>"Red line"</u> Copy of design plans w/ info pertaining to installation of actual work documented by the contractor, engineer, third party or some combination thereof.
- <u>Professionally surveyed as-built</u>: Surveyor does a topographic survey for the completed project, tied to the original design datum

As-Built Preparation Staff Level

As-built Level	Surveyor (S)	Engineer (E)	Technician (T)
No as-built	NA	NA	NA
Redline	NA	optional	optional
Topographic survey	required	Usually required	optional

SPECIALISTS, SUCH AS RLA's, Geologists, etc are considered as E's for this table

Tools for Possible Wider Application

		(())			
As-built Tool	Detailed Description	NCD	LSR	RSC	Effort	Skill
Sample	Particle Counts	optional	optional	optional	Medium	Т
Dimension	Floodplain bank height	required	required	optional	Low	Т
Count	Riparian vegetation (counts or coverage)	required	required	required	Medium	Т
Count	Vegetation (detailed sampling)	optional	optional	optional	High	E
Count	GPS structure location	required	optional	required	Medium	Т
Count	Biologic survey	optional	optional	optional	High	E
Evaluation	Modeling based on surveys	optional	optional	optional	High	E
Evaluation	BANCS or other erosion estimates	required	required	required	High	E
Witness	Photographs	optional	optional	optional	Low	Т

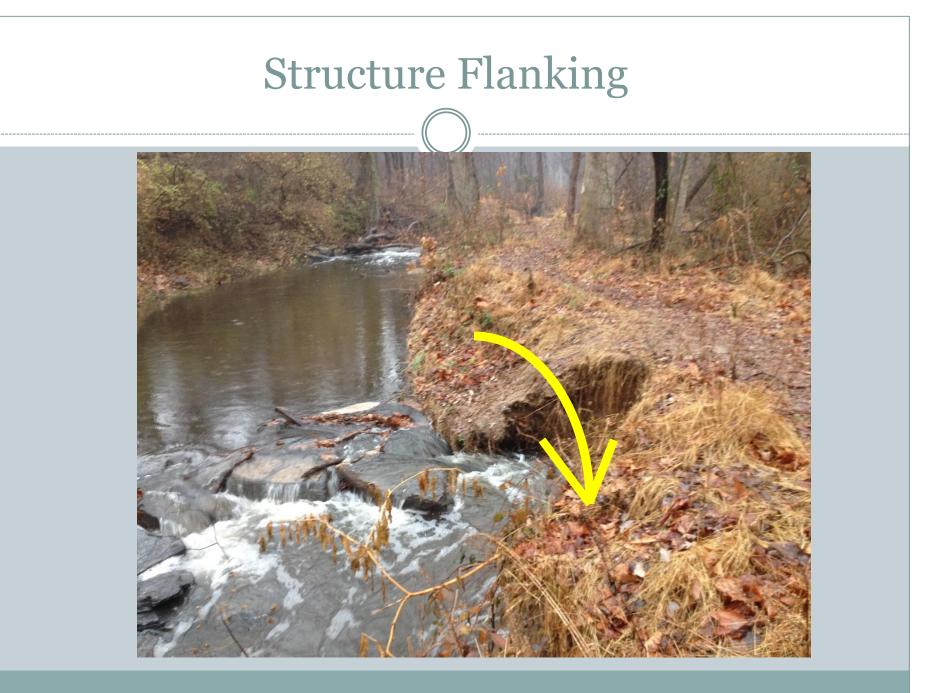
SPECIALISTS, SUCH AS RLA's, Geologists, etc. are considered as E's for this table

Objectives for SR Verification Guidance

• Craft a technically sound field method to assess pollutant reduction function of restoration projects over time

16

- Account for inherent differences in restoration design strategies and the three crediting protocols
- Establish an industry standard for project as-builts and supporting materials
- Provide numeric triggers for management actions for projects (e.g., confirm/reduce/eliminate credits)
- Enable a crew to inspect a 1000 ft project reach in 2-4 hours or less
- Provide useful data to inform design of future projects
- Impose reasonable and predictable costs for project sponsors in the long run


Defining Water Quality Function Loss for Protocol 1 (Prevented Sediment)

Criteria for	Key Visual Indicators	
Function Loss		
Evidence of bank or	Migration of incision through the project	
bed instability such	reach	
that the project	Vertical bank instability	
delivers more	Lateral bank instability	
sediment downstream	Flanking of individual structures	
than designed	• Downstream scour of in-channel structures	

Feedback:

Keep the list short...Focus on known cross-sections and/or preestablished photo stations to reduce observation bias... Some optional indicators may include riparian plant community, stream substrate composition and stream channel form diversity

Defining Water Quality Function Loss for Protocol 2 Hyporheic Box

Criteria for Function	Key Visual Indicators	
Loss		
Evidence that the reach is	Incision or obstructions preventsghts	
no longer fully meeting	to sharply depart from increase ratios	
design assumptions for	above 1	
expanding the hyporheic	Lack of carbon source evident in the	
box.	streambed	
	Bed sedimentation, embeddedness,	
	loss of riffles	
Feedback: This is the hardest protocol to define a "visual indicator"		

Feedback: This is the hardest protocol to define a "visual indicator" since the box is below the floodplain and stream and cannot be seen w/o digging a well

Defining Water Quality Function Loss for Protocol 3 Floodplain Reconnection

Criteria for Function	Key Visual Indicators
Loss	
Channel incision or	Evidence of stream/floodplain
floodplain sediment	disconnection
deposition increases effective	No evidence of floodplain sediment
bank height, thereby	deposition
reducing intended annual	• Increased bank heights due to channel
stream flow volume diverted	incision
to floodplain	• Upland plant species dominate wetland
	areas

Feedback So Far: More work needed for this protocol.

Possible Standard Resources to Use for Project Inspections

Parts of some off-the shelf stream assessment resources could be very helpful:

- Rapid Stream Restoration Monitoring Protocol (USFWS, 2014)
- Stream Corridor Assessment (SCA)
- Elements of Rapid Bioassessment Protocol (RBP)
- Stream Visual Assessment Protocol
- Others?

Verifying Streamside Plant Community?

- How useful is it to track the success of the original planting plans ?
- How do we account for factors like invasive species, beaver colonization and water table changes ?
- While we can set numeric targets for the success of the original project planting plan, should we bother ?
- The long term trajectory of the plant community is often hard to predict or control

Framework for Relating Reach Conditions to Management Decisions

Status	% of Reach Failing	Inspections	Re-testing ?
Functioning	less than	Re-inspect in 5 years	None Needed
Well	5%		Credit Renewed for 5 Years
Showing	5 to 10%	Re-inspect reach in	None, Credit renewed until
Minor		next three years	next inspection
Compromise			
Showing	11 to 30%	Conduct immediate	Re-do BANCs or floodplain
Major		forensic investigation	analysis and reduce credit
Compromise		to ID cause(s)	accordingly
Project	31% or	Drop credit, decide whether to reconstruct or abandon	
Failure	more	the project	

Feedback so Far: Like the framework, but reach percentages seem really conservative, not sure how % would be computed in the field, how do they reconcile w/ 50% efficiency for Protocol 1?