Shallow Water Modeling Case Study: Measurements and Models of Corsica River Water Quality

Why Shallow Waters?

- Often reside at the land-water interface, mediate or process watershed loads
- Support key habitats (tidal marshes, SAV)
- Accessible to large fraction of population
- Have unique challenges (diel cycling hypoxia, erosion, monitoring)
- A challenge for modeling:
 - Need high resolution (grids, loads)
 - High variability in time and space difficult to simulate and properly 'force'
 - Processes needed that may not be as relevant in deeper water
 - Erosion, benthic algae, complex shorelines

Tightly-Linked Pelagic-Benthic Processes: Potential for Non-linear Dynamics

Case Study: Numerical Model of a Shallow Water Estuary

- vol. 9, no. 3

 Telling the Corsica's Story
 Can We Clean Up the Corsica
- For More Information
 View from the Farm: Putting
- Best Management to Practice

 A Citizen Scientist on the
- Corsica River

 What Will It Take to Limit
 "Daily Loads"?
- Jack Greer Sets Sail
 Video Spotlight

CQ Archive

Of Marsh & Mud on the Anacostia River The Anacostia: Restoring a Ruined River

Implementing Best Management Practices Reduces Nitrogen in Two Corsica River Tributaries

State to clean up Corsica River

By CHRIS GUY

THE BALTIMORE SUN

SEPTEMBER 28, 2005 | CENTREVILLE

entreville -- Anxious for results in the state's Chesapeake
Bay cleanup effort, Gov. Robert L. Ehrlich Jr. announced
plans yesterday for spending nearly \$20 million and
concentrating the research of 30 state, federal and private
environmental agencies on improving the Corsica River - a small

Chl-a Effect on Hypoxia?

Inter-Annual and Spatial Changes in CHL-a

Low O₂ Water

Upper Corsica

Lower Corsica

Corsica Model Grid

SCHISM-ICM

- 20m resolution on coast, 100m at the mouth;
- 5029 cells, 5 layers
- Simulation year = 2006
- Phase 5.3 Watershed Model Loads

DNR monitoring stations in Corsica R.

Station	Cmon	Dflow	Tributaries	CMON yrs	Dflo yrs
XHH3851	X	X		2005 - 2013	2005 - 2013
XHH4528		X			2006 - 2013
XHH4742			X		
XHH4822		X			2003 - 2005
XHH4916	X	X		2006 - 2011	2006 - 2013
XHH4931	X	X		2006 - 2013	
XHH5046	X			2005 2006	2006 - 2013
COR0056		X			2006 - 2013

4323 -

30 60

UTM (km)

4322 -

UTM (km)

Case Study: Validation of Water Temperature, Salinity, DO

Case Study: Validation of Surface CHL-a

Very high chl-a concentrations predicted, but variability missed

Short-Term Variation in Model *Underestimates* Observations

Model *Underestimates* Overall O_2 consumption Consistent with missed O_2 Variability

Conclusions to Date

- (1) Even when implemented at extremely high resolution, current model does not capture diurnal variations in dissolved oxygen in a highly dynamic site.
- (2) Continued investigations will continue, particularly addressing the following questions:
 - (a) Is natural variability in PAR adequately forced on the model at short enough (~hour) time steps?
 - (b) Do the metabolic rates of primary production and respiration computed within the model agree with the substantial rates derived from observations?
 - (c) Is wind-stress properly applied in protected shallow tributaries, given most wind products are based on larger scales?
 - (b) Will fine-scale watershed model inputs be necessary to represent fine-scale effects of freshwater inputs to shallow waters and their associated circulation effects?

Model *Underestimates* DIP, Overestimates DIN P-limitation emerges in the model

Model *Underestimates* Sediment Oxygen Consumption, Overestimates NH₄ Efflux Consistent with missed O₂ minima, and high WC DIN

Dissolved O₂ Conditions Vary Seasonally and Daily

Contributors to Corsica Nutrient Loads

