Updating the Tributary Summaries

Breck Sullivan (USGS) and Vanessa Van Note (EPA)
January 2021 ITAT Meeting

Tributary Summaries Content

Potomac Tributary Report:

A summary of trends in tidal water quality and associated factors, 1985-2018.

December 18, 2020

Prepared for the Chesapeake Bay Program (CBP) Partnership by the CBP Integrated Trends Analysis Team (ITAT)

Recommended Citation: Keizman, J., Murphy, R. R., Devereux, O.H., Harcum, J., Karrh, R., Lane, M., Ferry, E., Webber, J., Wei, Z., Zhang, Q., Petenbrink, M. 2020. Potomac Tributary Report: A summary of trends in tidal water quality and associated factors. Chesapeake Bay Program, Annapolis MD.

- Purpose and Scope
- Location
 - Watershed Physiography
 - Land Use
 - Tidal Waters and Stations
- Tidal Water Quality Status
- Tidal Water Quality Trends
 - Surface Total Nitrogen
 - Surface Total Phosphorous
 - Surface Chlorophyll a: Spring
 - Surface Chlorophyll a: Summer
 - Secchi Disk Depth
 - Summer Bottom Dissolved Oxygen
 - Water Temperature
- Factors Affecting Trends
 - Watershed Factors
 - Effects of Physical Setting
 - Estimated Nutrient and Sediment Loads
 - Expected Effects of Changing Watershed Conditions
 - Best Management Practices (BMPs) Implementation.
 - Tidal Factors
 - Insights on Changes in the Potomac
- Summary
- References
- Appendices

Needs from this discussion

Are we missing any steps?

2) What the time frames are for each step?

3) What needs to be done to operationalize each step?

General Questions before we begin:

- 1. What is the timeline for updating CAST and Annual Progress? (Every 2 years for CAST; 1 year for Annual Progress)
 - Should we wait to update the graphs until we get 2021 Progress data in CAST-21?

2. What are the long-term goals?

- Update the tributary summaries every time the tidal data is updated?
- OR: Having staff in each tributary to update the tributary summary reports?

1. Purpose and Scope

Include Water Temperature text

2. Location

- Watershed Physiography
- Land Use
 - Olivia worked on this.
 - Update Land Use text and land use graph to include CAST 2019 data
- Tidal Waters and Stations

3. Tidal Water Quality Status

- Rebecca and Qian worked on this
- Update with 2017 2019 data text and tables on criteria, update text and graphs of comparing criteria with water quality trends

4. Tidal Water Quality Trends

- Surface Total Nitrogen
- Surface Total Phosphorous
- Surface Chlorophyll a: Spring
- Surface Chlorophyll a: Summer
- Secchi Disk Depth
- Summer Bottom Dissolved Oxygen
 - Update text, four planal plots, annual surface total nitrogen data and average predictions
 - Rebecca has created the 2020 line plots with instructions. She will be rerunning the maps.
- Water Temperature
 - Need to Add

Should we change the colors on the trend graphics?

5. Factors Affecting Trends

Watershed Factors

- Effects of Physical Setting
 - Jimmy Webber worked on this. Note that the FN load table is provided as Section 5.1.5 (last part of Section 5)
 - Update Table of flow normalized TN, TP, SS for nontidal network (more recent data available?; where/who does this data come from?)
 - Are there updated studies we would like to reference in the text?

Estimated Nutrient and Sediment Loads

- Qian worked on this.
- Source data from Gopal (for below-RIM load) and USGS CBRIM website (for RIM load).
- Qian did subsequent analysis in Excel and R to get the time series shown in the Figure, Trends shown in the Table, and Numbers shown in the text.
- Steps to reproduce the analysis and tables/figures have been documented.
- Update Mann-Kendall trends and Sen slope estimates table
- Update Text
- Update Estimated loads from RIM and below-RIM graph

Table 3. Trends (2009 – 2018) in flow normalized total nitrogen (TN), total phosphorus (TP), and suspended sediment (SS) for nontidal network monitoring locations in the Potomac River watershed.

Parameter	No. of stations	Value	Trend direction		
			degrading	improving	no trend
TN	28	n	7	14	7
		median %	15.4%	-5.8%	1.1%
TP	18	n	0	12	6
		median %	-	-28.9%	8.5%
SSC	18	n	5	5	8
				Pat	omac TN Load

Table 4. Summary of Mann-Kendall trends for the p phosphorus (TP), and suspended sediment (SS) loak

Variable	Trend,
TN	
Total watershed	-349
RIM watershed ¹	-47
Below-RIM watershed ²	-306
Below-RIM point source	-316
Below-RIM nonpoint source *	13
Below-RIM tidal deposition	-7.6
TP	
Total watershed	1.6
RIM watershed	0.0
Below-RIM watershed	2.4
Below-RIM point source	-1.8
Below-RIM nonpoint source	4.7
SS	
Total watershed	-4,988
RIM watershed	-6,426
Salam Sitt materials	300

Potomac TP Load

Potomac SS Load

7E-09

EE-09

EE-09

1E-09

5. Factors Affecting Trends

- Watershed Factors
 - Expected Effects of Changing Watershed Conditions
 - Did Olivia work on this?
 - Update text
 - Update Expected Long-germ average loads graph from CAST
 - Best Management Practices (BMPs)
 Implementation
 - Olivia can update this automatically.
 - Update text
 - Update BMP implementation graph

5. Factors Affecting Trends

- Tidal Factors
 - Rebecca worked on
- Insights on Changes in the Potomac
 - Update for Potomac and Rappahannock
 - Rebecca worked on
 - Tom left instructions for Figures 24 and 25.

Figure 24. Annual summary of SAV coverage (ha), water clarity (Secchi disk depth), and algal biomass (chlorophyll *a* concentration) for the period 1986-2010 in Mattawoman Creek. Note the large change in SAV coverage and water clarity associated with the large decline in algal biomass. From Boynton *et al.* (2014).

Figure 22. Conceptual diagram illustrating how hypoxia is driven by eutrophication and physical forcing, while affecting sediment biogeochemistry and living resources. From Testa *et al.* (2017).

6. Summary

- References
 - Qian worked on this
- Appendices
 - Rebecca worked on this
- Additional Need: Big Picture Review
 - Checking figure numbers and their references, checking format, table of contents.
 - Meghan Petenbrink and Jeni originally did this for the reports.