蟹 M

A Striped Bass rorage nolloator for Maryland s portion o Chesapeake Bay

Jim Uphoff

Maryland DNR, Fishing and Boating Services June 2018

Maryland＇s 2014 Chesapeake Bay Agreement Forage Goal

By $20 \cdot 1 \%$ ，clevelop al stategy for E15゙ニssing tue forage base available as food for sesident Striped Bess in IJD＇s portion of
C'sesョpeake Bay

Resident striped bass

- After spawning, most males \& some immature females stay in MD midBay (residents)
- Important fishery
- Main year-round large predator

Maryland's fisheries managers want practical guidance on....

(1) What forage is eaten? (2) Is there enough?
(3) Can $1 \& 2$ be answered at low cost?

MD striped bass indicator approach

- Forage availability + bass well-being. (How much forage and is it enough?)
- Use existing data and surveys
- Indicators linked biologically and statistically (not going into that today)
- Not etched in stone
- Can be modified and-or improved

Bass forage Indicator - keep it simple, inexpensive, and (hopefully) meaningful

- Tractable for available staff
- Understandable to public, managers
- (Human brain processes about 7 items without shutting down)
- Targets (good) and limits (bad) for indicators to judge status
- Summarize with a combined score

Previous Bay diet studies indicate important prey

Age 0

Ages 3+

Forage and striped bass metrics

Factor	Metric
Resident bass abundance	Catch per recreational boat trip (Sept-Oct)
Potential attack success	Forage index / bass abundance index
Forage availability	Proportion of bass in fall with empty guts
Bass Condition	Proportion in fall without visible body fat
Bass Survival	Age 3 index / juvenile index 3 years earlier

Proportion with visible body fat (fish condition) is key metric

- Other indicators' targets and thresholds calibrated to body fat
- Visible body fat index compared well to "gold standard" nutrition analysis (Jacobs et al. 2013)
- Fat index indicates overall food intake \& potential for starvation
- Body fat responds fairly quickly (weeks)
- Longest body fat time-series in fall (Fish Health Program)

Condition: percent of Striped Bass (11-34 inches) without body fat during October-November (MD DNR's Fish and Wildlife Health Program).

Long-term major prey trends, 1959-2017. Indices were standardized to common years ($1=1989-2017$ average).

Predator abundance: resident Striped Bass abundance index with target (best body fat) and threshold (poorest body fat) Catch per MD private boat trip, Sept - Oct.

Potential attack success: standardized forage to Striped Bass ratios when body fat indices were available (1989-2017 mean $=1$)

Use fall diet as indicator of prey availability

- Striped bass \& forage well mixed
-What did striped bass feed on?
- How well did they feed?
- CBEF diet study (2006-2013)
- Fall diet from health sampling since 2014
- Other seasons require new effort (\$\$\$\$)

Availability index: fall diet of

 "small" striped bass- 11 to 18 inches
- Varied diet compared to larger fish
- Important they survive to legal size (fishery based on this)
- We don't ignore "large" rockfish (> 18 in)
- Size break necessary for analysis due to CBEF permit restriction (Jim Price), 20062015

Grams prey consumed per gram of small (11-18 in) Striped Bass in fall hook-and-line samples. Age-0 forage dominates.

Percent of small (<18 in) Striped Bass diet represented by major forage groups, by number, in fall.

Forage availability: percent of small Striped Bass (<18 in) with empty stomachs in fall .

 Spot and menhaden size is an important influence.

Grams of prey consumed per gram of large (18-34 in) Striped Bass during October-November. Fall consumption dominated by YOY forage.

Natural mortality: relative survival of male Striped Bass to age-3 (spring gill net index / Jl in yr - 3). Y -axis scale is arbitrary.

Status summary for each indicator

Score	Description
1	At threshold
2	Near threshold
3	Avoid threshold
4	Approach target
5	At target

Mean score summarizes all indices. Individual scores indicate uncertainty

Indicator Issues (1)

- Forage availability \neq relative abundance
- Menhaden consumption varies more than JI
- More abundant menhaden than index indicates and-or feeding efficiency changes? Sampling issue with menhaden JI or diet?
- Small bass: Ratio of menhaden and spot size to bass size seems to influence feeding success (Small menhaden and spot easier to catch and handle)
- Older bass may become more efficient at obtaining prey (behavior and learning?)

Indicator Issues (2)

- Low data contrast? - Low forage, bass vary
- Mix of linear, abrupt (threshold), and lagged condition and survival responses to forage
- Indicators sometimes contradictory
- Diet and condition not sampled over the year
- Fall diet may miss other episodes

Indicator Issues (3)

Convenience vs designed sampling

- Statistical vs biological \& management significance
- Working on including benthic invertebrate index (MD biomass density from BIBI)

Management Thoughts 1

- Coastal assessments may miss regional issues
- Natural mortality not constant as assumed (relative survival and ASMFC tag-based estimates for Bay's legal fish)
- Expected bass outcomes from low fishing mortality in Bay may not be realized
- Escapement of young females
- Yield from Bay fisheries

Management Thoughts 2

- Benthic and pelagic prey in low regime
- High rockfish population popular idea, but may not be good for Bay balance
- Manipulating harvested forage for better recruitment may be ineffective because of weak influence of spawning stock
- Harvest of more and-or smaller bass (if allowed and accepted) may not entirely balance prey
- Worst conditions may be avoidable, best hard to meet

Hal Questionss umments?

$+6=-20$

Contact: jim.uphoff@maryland.gov 443-258-6087

