Identifying Sediment Source

ITAT Sept 10, 2018

Allen Gellis USGS Maryland WSC agellis@usgs.gov

Maryland's Final 2016 Integrated Report of Surface Water Quality

Figure 1: Stream miles impaired by various pollutants. Colors denote the stream miles currently addressed by TMDLs (blue) and those that still require TMDLs (red).

Where is all that sediment coming from?

Sediment Sources

Energy development, mining

Tools to identify sediment sources

- Models HSPF, GWLF, SWAT, SWMM, SPARROW, etc.
- Field measurements and Assessments
- GIS and Photogrammetry
- Sediment Fingerprinting

PROBLEM: Most of the models cannot estimate streambank erosion or target reaches where management actions should be directed.

SEDIMENT SOURCING USING SEDIMENT FINGERPRINTS

Underlying principle: potential sediment sources can be characterized using a selected suite of diagnostic physical and chemical properties – the fingerprints

Comparison of these fingerprints with equivalent information for fluvial (target) samples permits the relative importance of the potential sources

Sediment Fingerprinting < 0.063 mm

Sediment Fingerprinting < 0.063 mm

Steps in Sediment Fingerprinting Fines (Silts & Clays) (<0.063 mm)

- 1) Identify sources
- 2) Sample sources
- 3) Sample Target— (fluvial sediment)
- 4) Lab Prep
- 5) Determine the proportion coming from each source

Fluvial or Target Samples

- Suspended sediment ISCO, Passive Samplers (Walling Tubes), Isokinetic samplers, centrifuge
- Bed material fine grained sediment deposits
 Recently deposited floodplain sediment –
- Lake/reservoir/pond/impoundment

TRACERS OR FINGERPRINTS USED

Statistical Steps in Sediment Fingerprinting

Imputing non-detects
Outlier removal

Size and organic corrections

Bracket test

Stepwise Discriminant Function Analysis

Multivariate unmixing model

▼Error Analysis

Sed_SAT PROGRAM MAP

Gorman-Sanisaca et al., 2017

available at: https://doi.org/10.5066/F76Q1VBX

DATA INPUT

	<u>Source</u>			Berylliu	<u>Calcium</u>	Chromi					
<u>ID</u>	<u>Type</u>	<u>Arsenic</u>	<u>Barium</u>	<u>m</u>	_μg/g	<u>um</u>	<u>Cobalt</u>	<u>Copper</u>	<u>Iron</u>	<u>Lead</u>	
F1	FOREST	1.6	75.4	0.4	3040	2	4.5	10.8	2670	16.6	
F10	FOREST	3.6	152	1	3050	12.1	12.4	11.8	13500	25	
F12	FOREST	2.3	68.1	0.3	1740	6.3	1.9	4	11700	38.4	
F20	FOREST	2.9	205	1.4	5700	6	15.2	9.2	10500	36.5	
F3	FOREST	1.6	147	0.9	5780	3.6	4.2	. 4	5120	16.8	
F15	FOREST	2.6	43.9	0.6	3290	6.4	7.5	17.7	6670	14.7	
F7	FOREST	1	78.1	1.6	8170	12.7	9.6	6.9	12400	29.4	
F11	FOREST	1.9	100	0.5	7290	5.6	4.9	2.6	6000	25.6	
F19	FOREST	2.4	83.2	0.4	561	3.6	2.2	. 3	5780	37.3	
F6	FOREST	6.6	38.6	0.7	5180	6.2	5.3	5.8	8220	27.4	
F9	FOREST	1.8	213	0.9	1080	7.1	5.5	8.2	9080	31.6	
F4	FOREST	1.6	56.8	0.3	3910	4.7	1.4	2.6	5900	12.6	
F5	FOREST	2.1	81.9	0.6	5250	3	4.6	3.8	3890	24.2	
F2	FOREST	2.5	204	0.9	2740	4.2	10.3	9.5	7040	44.8	
P19	PASTURE	5.7	45.7	0.9	3470	10.7	5.4	12.7	10900	27.5	
P2	PASTURE	1.3	61.5	1	7150	8.2	5.6	20.6	11400	12.2	
P12	PASTURE	2.5	51.8	0.4	1340	5.8	3.7	18.3	6240	19.4	
P20	PASTURE	4.3	76.9	0.7	5880	15	10	29.1	19500	61.6	
P16	PASTURE	3	63	0.3	2970	6.2	4.7	12.3	7960	31.6	
P3	PASTURE	2.1	73	1	3280	10.1	8.4	10.1	14500	17.1	

Percent Classified Correctly by Linear Discriminant Function

93.269

Mixing Model Results

4	SampleName 🕶	Crop	w	Road	¥	Streambank	Ψ.	
	BHLCORE22-24		0	21		79		

SCALE

Modeling – Chesapeake Bay

- major watershed

At the management scale (<250km²) its important to differentiate upland vs channel sources

---effective scale for monitoring the effect of management actions to reduce sediment

rcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb104346

CASE SEDIMENT FINGERPRINTING STUDIES

Linganore Creek 2008-2010 (147 km²)
Piedmont – schist, gneiss
27% forest
54 agriculture (pasture and cropland)
11 % other

Fingerprinting Results Linganore Creek

Collected 200 fluvial samples over 36 storms, 2008-2010

Gellis et al., 2015

final set of tracers used Al, C, δ^{13} C, Cu, Fe, Li, Mg, Mn, N, Ni, Pb P, V

Weighted Results

Banks = 52%

Ag = 45%

Forest = 3%

Sediment Fingerprinting Results Difficult Run, VA 20082009 (14.2 km²)

Bank erosion is a major source of sediment in urban areas – example from Difficult Run,

Fairfax County, VA.

Difficult Run, VA above Miller Heights

Total sediment contributed by banks

SOURCES

FOREST

PASTURE

CROPLAND

BANKS

Smith Creek, Virginia 246 km²

Smith Creek Results 2012-2015

 Fingerprinting Source Results Compared to Sediment TMDL Smith Creek TMDL, annual loadings 10,680 Mg/yr (VADEQ, 2009)

Smith Creek TMDL, annual loadings 10,680 Mg/yr (VADEQ, 2009)

USGS load 6,260 Mg/yr (Hyer et al., 2016)

City of Harrisonburg, and Town of New

Market, Virginia

The next generation of tools for targeting and monitoring

Lidar, drones, Structure from Motion

Summary

Sediment fingerprinting to allocate sources (Sed_SAT)

- Channel vs uplands
- Allocating Sources at Management Scales
- Combined with 'state-of-the art' technologies target sources and monitor the effectiveness of management actions in reducing sediment
- Education- training for Sediment Fingerprinting and "State-of-the Art' technologies

THANK YOU