Blue crab management: successes and challenges

Thomas Miller

Director

Chesapeake Biological Laboratory

University of Maryland Center for Environmental Science

146 Williams Street //0038

Solomons, MD 20688

Email: miller@umces.edu Tel: 410.326.7276

@tomatcbl

Management framework

Amount

Spending rate

Amount

Blue crab control rule

Estimating abundance – winter dredge survey

- Conducted yearly since 1990
- Winter crabs are dormant, no movement
- 1 minute tow of a crab dredge
- ~1,500 stations per year

Adult females

Adult females

Adult males

Total commercial blue crab landings (all market categories) in Chesapeake Bay, 1990-2018

Summary

- Mature female abundance (191M crabs) is at 88% of the target
 - Management action has likely lead to a 97% increase in abundance of mature females since 2008
- Female exploitation rate is below the target for the 10th straight year
 - Management action has likely reduced exploitation rate by almost 90% since 2008
- Recruit abundance (323M crabs) is higher than premanagement action
- Male abundance remains low (79.7M crabs), but even here is 24% higher than pre management
- Total crab abundance (594.5M crabs) is 56% higher than in the decade pre-management
- Harvest remains approximately equal to levels observed in the decade pre-management

 Communication – Can we please stop separating abundance and catch as indices.

Blue crab control rule

- Communication
- Estimating reference points
 - Improved stock assessment methodology.
 - Need to define target in a socio-ecological context.

Enhanced stock assessments

- Fuller recognition of uncertainty
- Robust decision making
 - Allows managers to understand risk when taking decisions (Wilberg et al. 2019. Mar. Coastal Fish.)
 - Requires inclusion of stakeholders in determining targets – what does society want the fishery to provide (Miller et al. 2010. Fisheries)

Liang et al. 2017. J. Ag. Biol. Env. Stats

- Communication
- Estimating reference points
- Ecosystem-based effects

Ecosystem impacts on blue crab recruitment

- Communication
- Estimating reference points
- Ecosystem-based effects
- Climate change
 - Acidification
 - Winter temperature change

Climate change - acidification

Response	Temperature	pCO2
Growth per Molt	No effect	No effect
Growth Rate	Increase	No effect
Food Consumption	Increase	No effect
Metabolic Rate	No effect	No effect
Carapace Thickness	Decrease	No effect
% HMC	Decrease	Increase
Mg:Ca	Increase	Increase

Sacrificing carapace integrity for growth

Maintenance of physiological properties

(Glandon et al. 2018. J Exp. Mar. Biol. Ecol.)

Climate change – winter temperature

- Communication
- Estimating reference points
 - New joint Academic-State-Federal partnership needed
- Ecosystem-based effects
 - Enhanced research presence
 - Enhanced data hub
- Climate change
 - Additional research on all life stages
 - Incorporation into ecosystem-based models

http://hjort.cbl.umces.edu

