

Lisa Wainger, Elizabeth Price, Taylor Hollady University of Maryland Center for Environmental Science for Chesapeake Bay Water Quality GIT November 12, 2019

Purpose and Overview

- Provide updated cost estimates for nonpoint source nutrient management practices
 - Stormwater
 - Agricultural
- Overview
 - Methods
 - Results
 - Comparison with CAST

Data Sources – Implementation Costs

Stormwater BMPs

- Maryland MS4 Counties and SHA reports (n = 353)
- O&M PG County methods

Agricultural BMPs

- Maryland Agricultural Cost Share (MACS) (n=3,830)
- USDA NRCS Program (EQIP & CRP) (Maryland, 2018)

Stormwater – Additional Data Sources

- Lifespans estimated from county and state input
- O&M costs estimated using methods from PG County and CAST
- 3. Land costs from CAST

Agricultural BMPs – Additional Data Sources

- Lifespans from MACS or NRCS Maryland payment schedules
- 2. O&M costs from MDA
- 3. Land costs (ag rental rates) from CRP

Variability of cost-effectiveness

Stormwater Results Cost Effectiveness for Nitrogen (Annual Implementation Costs)

Stormwater Results Cost Effectiveness for Phosphorus (Annual Implementation Costs)

Agricultural Results Cost Effectiveness for Nitrogen (Annual Implementation Costs)

* Outliers removed Oswnofence removed - \$1,392/lb

Agricultural Results Cost Effectiveness for Phosphorus (Annual Implementation Costs)

*Outlier removed Oswnofence removed - \$9,816

Cost components

Annualized Stormwater BMP Costs CAST BMPs with Unit of Acres Treated or Acres

Annualized Agricultural BMP Costs Land Management

Comparison of UMCES and CAST total annualized costs per unit

Stormwater Practices UMCES & CAST Comparison (mixed units)

\$0

\$2,000 \$4,000 \$6,000 \$8,000 \$10,000 \$12,000 \$14,000 \$16,000 Annualized cost per unit

Stormwater – Reasons for generally higher costs

- Higher median implementation costs
- Higher operations and maintenance (O&M) costs;
 8.2% 13.4% compared with 2.5% 6% in CAST.
- Shorter lifespans for some practices
 - e.g., 20 years in UMCES vs 50 years used in CAST for infiltration practices

Agricultural Practices – Land Management UMCES & CAST comparison

Agricultural Practices - Animal & Manure Management UMCES & CAST comparison

Agricultural Results

- ~ 75% of practices had higher estimated annualized cost per unit than CAST estimates (16%-100%)
- ~ 25% had lower annualized costs than CAST estimates (79%-13,000%)
- Differences due to:
 - Implementation costs higher for 70% of practices
 - O&M costs usually higher than CAST for MACS and lower for EQIP
 - Longer lifespans for MACS practices lowered costs
 - (Opportunity costs of land were not a major factor)

Did we see economies of scale? Stream Restoration IAE vs Implementation Cost

Cost-effectiveness across Stormwater and Agriculture Sectors

Median Annualized Costs of Practices in Use

	Median \$/lb of N reduction	Median \$/lb of P reduction
Stormwater BMPs (excluding storm drain cleaning and practices n<3)	\$1,082	\$8,384
Agricultural BMPs	\$16	\$489

Data from Price et al. 2019. Cost Analysis of Stormwater and Agricultural Practices for Reducing Nitrogen and Phosphorus Runoff in Maryland.

Conclusions on Cost Updates

- Updated costs for a subset of BMPs using spending data
 - 33 SW BMPs (17 CAST BMPs)
 - 20 Agricultural BMPs
 - CAST Cost Profile available "Maryland Costs Updated with UMCES BMP Cost Report"
- Updated cost estimates differ from those in CAST
 - SW: 14 higher, 3 lower
 - Agricultural: 13 higher, 7 lower
- Cost variability for a given practice is high for SW, more modest for most agriculture

Implications for Cost-Effectiveness Targeting

- Stormwater BMPs generally cost more than CAST estimates
- Stormwater costs remain 1-2 orders of magnitude higher than agricultural, when all costs are included
- Several Ag BMPs had substantial differences from CAST
 - Stream fencing and narrow buffers appear much more cost effective
 - Wetland restoration and tree planting appear less cost effective
- Caveat Average land costs are likely to fail to represent high variability of opportunity costs of land